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ABSTRACT 

Improvised Explosive Devices (IEDs) continue to kill 

and seriously injure military members throughout the Iraqi 

theatre.  Autonomous Ground Vehicle (AGV) seeks to identify 

the human presence placing the IED and then report that 

contact to a unit of action.  This research developed a 

semi-autonomous platform that can navigate to waypoints, 

avoid obstacles, investigate possible threats and then 

detect motion that triggers a visual camera.  The 

information is then relayed back to the user and can 

trigger a variety of actions.  AGV has been tested in a 

numerous environments with a wide range of success.  It is 

limited by the communication range from its standard 

802.11G router and the continuous availability of the 

global positioning system.  Terrain with extensive peaks 

and valleys is not ideal for the current platform.  

However, for detecting the human presence that is 

consistent with IED placement, AGV is well suited. 
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I. INTRODUCTION 

The military has a wide range of projects underway to 

deploy robotic platforms in operational environments.  

These projects impact the battlefield with varying degrees 

of success.  There are two distinct areas in which the 

military currently employs robotic platforms.  Most notably 

is the Unmanned Aerial Vehicle (UAV).  The other is the use 

of a ground robotic platform for IED (Improvised Explosive 

Device) detection and destruction.  Neither of these 

platforms is autonomous.  Currently, Explosive Ordnance 

Disposal (EOD) units use the TALON platform to aid them in 

completion of their missions.   

The Department of Defense has a Joint Robotics Program 

(JRP).  This program is designed to research unmanned 

ground systems for use in a wide range of military 

applications.  The program started by examining the 

performance of different platforms over diverse terrain.  

As the program evolved, more autonomous functions were 

investigated.  As with all technical based programs, the 

end stage product is limited by the available technology 

[Ref. 20].  Currently, most participants have encountered 

similar problems.  Most noticeably are onboard sensor 

limitations and the processing power of the onboard 

computers.  

A. UAV 

The most common and unclassified UAV program is the 

Hunter project [Ref. 1].  The system is capable of the 

following missions:  real time imagery intelligence, 

artillery adjustment, battle damage assessment, 
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reconnaissance and surveillance, target acquisition and 

battlefield observation.  Figure 1 is a common Hunter 

employed on a military mission.  Figure 2 shows the Army 

personnel controlling the UAV.  The control station 

consists of a separate vehicle and an extensive amount of 

electronics.   

 
Figure 1.  A typical UAV on a mission (From [Ref. 1]). 

 

 
Figure 2.  The control station for the UAV (From [Ref. 

1]). 
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B. TALON 

Although there are specialized ground robotic 

platforms that the Army employs (cave searching in 

Afghanistan, room clearing in urban environments, etc.), 

the most commonly used ground robot is the TALON platform.  

Figure 3 shows a typical EOD mission for the TALON. 

There is testing underway to employ this platform in a 

variety of roles, but the only current mission is with the 

EOD units for IED detection and disarmament.  The TALON is 

not autonomous, weighs approximately 100 lbs, costs well 

over $50,000, and has dimensions of approximately 3’ x 2’ x 

3’ [Ref. 2].  These factors make it unsuitable for use in 

the proposed missions for AGV.   

 

 
Figure 3.  The TALON robot employed to investigate an IED 

(From [Ref. 2]). 
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C. PREVIOUS NAVAL POSTGRADUATE SCHOOL (NPS) PROJECTS 

The Small Robot Technology (SMART) initiative at NPS 

develops prototype robotic platforms for the military.  The 

robots’ missions are extensive and they range in size from 

inches to several yards.  The development for the current 

AGV started with a prototype known as Bender.  Bender was 

not intended for a specific mission, but was designed to 

investigate autonomous architecture.  It had a hardened 

track chassis with a box shape.  It incorporated ultrasound 

sensors to aid in collision avoidance.  The basic 

programming (Dynamic C) along with the on-board computer (a 

commercial BL2000) is the same as AGV uses.  Bender had a 

web-cam to view any contacts that came within its path.  It 

functioned autonomously to the point where it could move 

from one point to another while avoiding large obstacles.  

Figure 4 shows Bender in its final form.  The size, slow 

speed and cumbersome movement made the platform unsuitable 

for our AGV’s proposed mission. 
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Figure 4.  Bender in its final form in the NPS quad. 

 

The next generation of autonomous robots turned 

towards naval specific applications.  LT Jason Ward created 

Lopez.  This platform was the first prototype for a surf-

zone robot that can conduct reconnaissance and surveillance 

on the beachhead.  In the future, these platforms will be 

launched from surface ships or submarines.  Figure 5 shows 

the working Lopez model.   

The third generation of the robots from the SMART 

program was created in collaboration with ENS Tom Dunbar 

from NPS and Case Western University.  Agbot is a much more 

powerful aluminum version of Lopez.  Although this platform 

had problems with its structure, it is a working prototype 

that has been successfully tested on sand, grass, and 
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concrete [Ref. 3].  Figure 6 shows Agbot prepared for a 

test run.  Both Lopez and Agbot were designed to run 

autonomously from a Java interface.  Although Lopez and 

Agbot are for naval applications, the same basic components 

(GPS, on board computer, compass, camera, and router) along 

with the computer coding are incorporated on AGV.  

 

 
Figure 5.  The figure shows Lopez with all of its 

components installed (From [Ref. 3]). 

 
Figure 6.  The figure shows Agbot with all of its 

components installed (From [Ref. 3]. 
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D. AGV MOTIVATION 

The United States Army currently has soldiers being 

killed or seriously wounded at an alarming rate while 

deployed in Iraq.  Based on my experiences, the IED 

accounts for the majority of those casualties.  To date, no 

effective techniques have been found to adequately guard 

the thousands of miles of main supply routes that are 

needed to re-supply units and conduct continuing missions.  

As an example, my company was assigned well over 50 miles 

of roadways to continually prevent IED placement.  In 

addition to that continuing mission, we had Quick Reaction 

Force duty, periodic raids, base security, and a host of 

other tasks.  To adequately guard the roadways was 

virtually impossible given my 6 M1A1 tanks, 8 BFV (Bradley 

Fighting Vehicles) and 135 soldiers.  Within the Task 

Force, my company had the only heavy armor.  The IED threat 

made the risk of putting softer skinned vehicles 

continuously in sector too great.   

The insurgents place IEDs in three stages: 

1. The hole is dug or camouflage created and the IED 
is placed, 

2. The detonation device is placed, 

3. The connections are made. 

Detecting the IED itself is extremely difficult.  However, 

in each of the three placement stages, there is a human 

presence that can be detected.  The tank or BFV in that 

sector has to be watching that specific small area at the 

exact right time to detect the insurgents placing the IED.  

The area is just too vast and the insurgents are fairly 

intelligent.  If a tank or BFV moves from one location, the 

insurgent knows he has a window of time when that area is 
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not being watched, a perfect time to do one of the three 

IED placement stages.  I estimate that 40% – 50% of the IED 

casualties occur in a location where a previous IED was 

detonated.  There are many reasons for this, but if nothing 

else the insurgents know a pattern that works in that 

location and it is very difficult to stop their cycle.  

AGVs could be tactically deployed to those areas to detect 

any suspicious activity. 
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II. ROBOTIC FUNCTIONAL DESIGN 

 
Figure 7.  AGV seen from the front. 

 

A. PROBLEM SOLUTION 

Figure 7 is the AGV designed to combat the problem 

listed above in the project motivation.  AGVs can be 

tactically placed to observe potential IED locations at 

appropriate times.  Ideally the entire country or at least 

the main supply routes would be over watched with hard 

mounted visual and thermal cameras.  The power would come 

directly from the Iraqi power grid and each camera would 

have a back up battery.  This is not feasible given the 

current operational and tactical situation.   AGVs can be 

used in a number of tactical scenarios, individually or in 

groups.  When an armored vehicle moves from an area a 

crewmember could easily place a single AGV to monitor the 

general location just vacated.  In daylight, the robot 
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could be disguised within the tremendous amount of trash 

lining all of the main roads in Iraq.  At night, very 

little disguise would be necessary.   

AGV is equipped with acoustic and IR (infrared) motion 

detectors.  These sensors can trigger a thermal or visual 

camera once they detect motion.  Upon detection, AGV sends 

a message back to the unit.  It can then be turned over to 

manual control and the person monitoring can reposition (if 

necessary) the camera to decide if an IED is being 

emplaced.  Or, AGV can continue to send video feed and text 

messages in autonomous mode.  Ideally, presence of 

insurgents with IED material would trigger an armored or 

infantry response for action.  If soldiers in the area 

could not move to intercept the insurgent in time for a 

possible kill, an ambush could be employed for the next 

stage of emplacement.  At a minimum they would secure the 

area for EOD personnel to come and further evaluate the 

ordinance.   

A second technique could be to place a group of AGVs 

in habitual problem areas.  As an example, five AGVs 

networked together could over watch a given space of MSR.  

There are a number of scenarios to tactically employ AGVs, 

but once in sector the odds of observing the IED 

emplacement have increased significantly.  If one AGV 

detects a possible emplacement, the other four could be 

repositioned to look for the building the insurgents were 

using and the routes they took to get in and out.  This may 

not allow for the instantaneous kill of the insurgents 

emplacing the IED, but it would certainly prevent a convoy 

from moving through the possible IED location.   
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B. BLOCK DIAGRAM 

Figure 8 is shows the entire AGV process from when it 

is initially placed until it detects the human presence 

placing the IED.  As a summary, once dropped the user needs 

to decide if AGV needs to move to a different location.  

This can be accomplished autonomously by sending AGV to a 

waypoint, or by manually controlling it into position.  If 

moved autonomously AGV will internally calculate the 

heading it needs to travel on and then rely on the GPS to 

stop at the appropriate location.  While moving 

autonomously, the Proportional Integral Derivative (PID) 

control will ensure it stays on the appropriate heading.  

Once at the desired location, AGV will turn off its motors 

and turn on the detection (consisting of the motion 

detectors).  Once a presence (or motion) is detected AGV 

will send a text message back to the user.  The user then 

has the option of continuing to just monitor the motion, or 

to activate the on board camera to take a snap shot photos 

(automatically sent to the GUI) of the area.  If no 

presence is detected, AGV will continue to monitor but has 

the ability to autonomously move through a predetermined 

set of waypoints (detecting at each) or the user can always 

manually control AGV to a different location.  Each time 

AGV moves, the detection will be turned off and reset.    



 12

 
Figure 8.  The diagram depicts the typical employment of 

AGV. 
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III. EXPERIMENTAL DESIGN 

Table 1 shows a summary of the all the main components 

AGV uses. 

Hardware Component Vendor Price Operating Parameters

AGV Base Superdroid Robots $209.35 14" x 13" x 4", 1" ground 
clearance

Batterey Superdroid Robots $34.70 NiMH, 2 x 10 array of AA
batteries

Motors Superdroid Robots $18.95 ea. 24-volt, 195-rpm gear motors

Motor Controllers Superdroid Robots $26.95 ea.
12-55VDC, 3A to 6A, 4 pin 
(brake, direction, PWM, 
ground)

Ultrasonic Range Finder Superdroid Robots $62.00 Objects from 0" to 254", 
utilizes IIC/I2C bus

IR Rangers Superdroid Robots $14.85 ea. Objects from 5cm to 80cm, 
analog output

PIR Motion Detector Willy's Electronics $36.69 Motion up to 25m, infrared 
input, utilizes a Fresnel Lens

Ultrasonic Motion Detector Kitsrus $34.99 apx. Motion up to 10m, 40 kHz
frequency

Router Newegg $129.99 802.11GHz wireless router, 
max range apx. 300m

BL2000 Rabbit $449.00
Single-board computer, 
22.1 MHz, 11 analog inputs, 
2 analog outputs

Compass Honeywell $675.00 Digital magnetic compass,
heading to +/- 0.5 degrees

GPS GPS City $174.95 Low voltage system, utilizes
WAAS network

Camera D-Link $94.99 Web server 10/100Mbps, 
640x480, 320x240 resolution  

Table 1.   The table is a summary of the main hardware 
components AGV uses. 

 
A. PLATFORM 

1. AGV Base 

The base of the AGV is an aluminum welded base 

approximately 8.5 by 10 inches.  The sides are 1.75 inches 

high.  The wheels are four inches in diameter and are 

presently filled with standard packing foam for stability.  

With the wheels mounted, AGV is 14 by 13 inches.  It has 
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approximately one inch of ground clearance, but with the 

collision avoidance it can traverse a surprising wide range 

of terrain [Ref. 4].  Figure 9 shows the bottom of AGV 

along with the wheelbase. 

 
Figure 9.  AGV viewed from the bottom. 

 

2. Power Bus and Battery 

The power bus with battery consists of all commercial 

off the shelf (COTS) products.  The battery (Figure 10) is 

mounted on the underside of AGV.  It is a 20 cell, 24VDC 

2000mAhr rechargeable Nickel Metal Hydride (NiMH) battery 

pack [Ref. 5].  During continuous operations on a full 

charge, the battery provides approximately two hours of on 

station time.  As an aside, the motion detectors are  

 



 15

powered by a separate 9-volt battery for reasons discussed 

later.  The battery pack has a 2x10 array of standard AA 

batteries.  

 

 
Figure 10.  20 cell, 24 VDC, 2000 mAhr, rechargeable NiMH 

battery pack. 
 

The battery connects with the master switch that then 

connects to a standard 12-volt regulator rated for 5 amps 

of current [Ref. 6].  The 12-volt regulator has two outputs 

that send voltage to four ports for the components that 

require 12 volts (GPS, compass, router and the BL2000).  

The other output feeds into a standard ML7805 5-volt 

regulator.  The 5-volt regulator has eight ports for the 

various components that require 5-volts (IR rangers, sonar, 

etc.).  The power bus has connectors for the components 

that require IIC (computer coding discussed later) in order 

to function.  There is a 16-volt 1000-microfarad 

electrolytic capacitor protecting the 5-volt ports.  

Additionally, the bus has a cut off switch for the motors.   
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The switch either turns the motors completely off or allows 

the BL2000 to control them.  Figure 11 shows the complete 

power bus. 

 

 
Figure 11.  Power Bus. 

 

3. Motors and Motor Controllers 

The motors are not powered through the power bus on 

the topside of AGV.  Their connections run directly from 

the battery to the motor controllers through a circuit 

located on the underside of the robot.  Each wheel has its 

own motor (see Figure 12) and each side of the robot is 

controlled by one motor controller (see Figure 13).  The 

four motors are 24-volt, 195-rpm gear motors.  They are 

rated for less than 150-mA of current when loaded and have 

a torque rating of 1.4 kgf-cm [Ref. 7].   
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Figure 12.  One of the four motors connected to each wheel. 

 

The motor controllers are simple control boards (see 

Figure 13).  They are designed to work specifically with 

the IG32 motors for the AGV platform [Ref. 8].   

 

 
Figure 13.  Both motor controllers mounted on the underside 

of AGV. 
 

The boards are easy to construct and have accessible 

external pins for the direction, brake, and the pulse width 
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modulation (PWM) option.  AGV does not use the available 

PWM portion on the motor controller.  Instead it has an 

externally constructed PWM circuit (discussed later) in 

order to better control the speed.  In the current 

configuration pin P (PWM) is tied high (5 volts), pin B 

(brake) is controlled from the BL2000.  On is high and off 

is low (ground).  Pin D (direction) is controlled through 

the external PWM circuit.  It receives a standard square 

wave that controls the speed depending on the duty cycle.  

Figure 14 is a functional diagram for the entire circuit 

board.   

 

 
Figure 14.  Motor controller function diagram (From [Ref. 

8]). 
 

4. Pulse Width Modulator (PWM) 

AGV uses a PWM signal from an external circuit that 

was originally designed to work with Agbot.  The circuit 

was modified for an appropriate frequency for AGV.  Figure 

16 (A) shows the actual circuit on AGV while (B) shows the  
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values of the components in the circuit.  The circuit 

begins with a LM555 chip that produces a modified 

triangular wave.  The frequency is given by: 

( ) ( )( )
( )

1 1 2

2
3 1 2 1

0.6cc

cc F

RV R R
F

V R R R C
− +

=
+ . 

Equation 1.   Frequency of the PWM circuit 
 
Based on the amount of noise on the output wave, testing 

multiple frequencies showed that 1.1 KHz was optimal for 

AGV.  The modified triangular wave feeds into a LM324 chip, 

which is simply multiple operational amplifiers configured 

as a comparator.  The wave goes into the positive input of 

two separate comparators (one for each motor controller).  

The negative input of the comparators comes from the BL2000 

analog outputs.  The desired speed of AGV is computed in 

the code, which corresponds to a voltage.  That voltage is 

sent through an analog output of the BL2000 (one for each 

motor controller).  The voltage falls between the extremes 

of the modified triangular waves voltages from the LM555.  

In this arrangement, the comparator then forms a standard 

zero to 5-volt square wave.  The square waves feed into pin 

D of the motor controllers and they send the signal to the 

motors.  The duty cycle of the square waves determines the 

speed of the motors.  For AGV, a duty cycle of 0% (straight 

line 5 volts) represents full speed reverse and a duty 

cycle of 100% (straight line 0 volts) represents full speed 

forward.  There is a linear relationship for corresponding 

duty cycles and speeds [Ref. 3].  Figure 15 shows typical 

waveforms that are sent to the motor controllers on AGV.  
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(A) 

   
     (B)             (C) 

Figure 15.  Typical waveforms sent to the motor 
controllers.  (A) represents the motor 
controllers telling the motors to stop (an 
approximate 50% duty cycle).  (B) shows an 
approximate 25% duty cycle that corresponds to 
half speed reverse.  (C) shows an approximate 
75% duty cycle that corresponds to half speed 
forward. 

 

Turning AGV is nothing more then having the BL2000 send a 

different voltage for each side of the platform that 

corresponds to a different waveform to the separate motor 

controllers.  Table 2 lists the typical values for the pins 

on the motor controllers that correspond to the output 

(speed) by the motors.   
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Pin P (PWM) Pin D (Direction) Pin B (Brake) Output
H H L Full speed reverse
H L L Full speed forward
X X H Stop
L X X Stop
H 50% DC L Stop
H 25% DC L 1/2 Speed reverse
H 75% DC L 1/2 Speed forward

H = High (5-volts), L = Low (0-volts), X = H or L, DC = Duty Cycle  
Table 2.   Possible combinations of the motor controller 

pins and the PWM circuit. 
 

      
            (A)                             (B)               

Figure 16.  (A) The actual PWM circuit on AGV.  (B) The PWM 
circuit diagram. 

 
B. SENSORS 

1. Ultrasonic Range Finder 

After AGV receives a command to move autonomously to a 

new waypoint it goes into navigation mode.  In that mode it 

periodically checks to see if there is an obstacle in its 

path.  There are seven sensors associated with the 

collision avoidance.  The primary forward-looking sensor is 
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the SRF08 ultra sonic range finder.  Figure 17 shows the 

sensor along with the first three IR rangers mounted on the 

front of AGV.  Figure 18 shows the beam pattern the sonar 

emits.  It can detect and respond to obstacles within this 

pattern. 

 

 
Figure 17.  Forward-looking sensors for collision 

avoidance. 
 

 
Figure 18.  The beam pattern emitted by the sonar (From 

[Ref. 9]). 
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The sonar has a maximum range of six meters or 236 

inches.  The control system allows the BL2000 to read an 

object at a distance in centimeters or inches.  The 

computer code reports an obstacle at 30 inches and forces 

AGV into avoidance.  The sonar is a basic ultrasonic 

sensor.  The transmitter emits an ultrasonic pulse or 

energy (at a frequency of 40 kHz) [Ref. 9].  An object 

within the beam pattern then reflects that energy uniformly 

within a solid angle (this angle may approach 180 degrees).  

The frequency of the reflected wave is different than that 

of the transmitted wave [Ref. 10].  This difference is then 

converted into a distance using the following formula: 

cos
2o

vtL Θ
=

   

Equation 2.   Distance to an object from the ultrasonic 
rangefinder (From [Ref. 10]). 

 
In this equation t is the time the ultrasonic wave takes to 

hit the obstacle and then return.  v is the speed of the 

wave.  Figure 19 shows the typical design for an ultrasonic 

detection sensor.  The angle Θ  is the same as the one 

referenced in Equation 2.   
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Figure 19.  A generic ultrasonic detection sensor (From 

[Ref. 10]). 
 

To generate the ultrasonic wave the sensor uses a 

piezoelectric transducer.  In the transmitter, a voltage is 

applied to the piezo ceramic element.  This causes the 

material to flex and emit the wave.  Conversely, when the 

wave returns and hits the receiver it causes a flex in the 

piezo ceramic element that generates a voltage [Ref. 10].  

The sensor is designed for continuous transmission 

(although when combined with the IIC code this is not 

exactly what the AGV does).  Therefore, it needs both a 

transmitter and receiver but they are identical in design.   

Communication with the ultrasonic detection sensor is 

through the IIC protocol.  Although the ultrasound is the 

only sensor that requires IIC, the power bus contains 

additional ports to add other IIC sensors.  The ultrasound 

is also equipped with a front facing light sensor.  AGV 

does not currently use this feature. 

 



 25

2. IR Rangers 

 AGV has six infrared rangers.  Three are mounted in 

the forward direction to detect obstacles while navigating 

autonomously (see Figure 17).  They cover the same basic 

area that the ultrasonic range finder covers.  However, the 

IR rangers have proven to be much more reliable than the 

ultrasonic range finder.  In addition to looking forward, 

two rangers look to each side.  Once AGV detects an 

obstacle (from any of the forward looking sensors) it 

references each of the side rangers (see Figure 20).  The 

side rangers tell it which side has the most clearance 

(greatest distance to an object).  AGV then chooses to turn 

away from the obstacle based on the information the side 

rangers provide it.   

 

 
Figure 20.  The side facing IR rangers. 

 

 Each IR ranger is a GP2D12 from Sharp.  In testing, 

they can accurately measure range from approximately five 

centimeters up to 80 centimeters.  They are analog based 

with a voltage reported from 0 to approximately 2.6 volts.  

The rangers use triangulated IR light to detect the 

distance to an object.  The emitter continuously emits IR 

light at a wavelength of approximately 850 nanometers.  If 

an object reflects that light, then the detector collects 
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it.  With a constant location between the detector and the 

emitter, the ranger can calculate the distance to the 

object [Ref. 11].  It generates a voltage that corresponds 

to that distance.  Figure 21 shows the non-linear graph of 

voltage versus distance.  For the forward-looking sensors, 

AGV has a set voltage (or distance) that it knows it has to 

maintain in order to not classify an object as an obstacle. 

 

 
Figure 21.  Output voltage versus distance to objects for 

the IR ranger (From [Ref. 11]).  
 

3. Pyroelectric Infrared Motion (PIR) Detector 

 To detect a human presence placing an IED, AGV has two 

types of motion detectors.  The first is the PIR motion 

detector.  Figure 22 shows the detector mounted to the 

front of AGV.  
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    (A)           (B) 

Figure 22.  (A) is the PIR motion detector with the Fresnel 
lens mounted.  (B) shows the PIR sensor and the 
daylight detection sensor underneath. 

 

PIR motion detectors are preferred by industry over other 

sensors for their range and ability to not report false 

detections.  This is a sensor that advertises it can report 

motion up to 25 meters (using a Fresnel lens with a focal 

length of approximately five centimeters) [Ref. 12].  

During testing AGV could reliably report motion to 

approximately 15 meters.  The discrepancy is more than 

likely due to interference from the router.  The sensor has 

three main components:  Fresnel lens, PIR sensor, and a 

daylight sensor.  AGV does not utilize the daylight sensor 

(when activated it detects motion regardless of the amount 

of ambient light).   

 Humans produce infrared radiation that is concentrated 

within a spectral range between four to 20 micrometers (of 

course so do many animals making it difficult if not 

impossible to distinguish).  The inside of a typical PIR 

detector is depicted in Figure 23.  The Fresnel lens breaks 
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up the detection area into optical zones.  When a human 

presence is located within the detection area and the 

presence moves from one zone to another, it generates a 

heat wave [Ref. 12].  The heat wave causes the front side 

of the pyroelectric material, seen in Figure 22 (B), to 

expand.  The stress in the material then causes a 

piezoelectric charge on the electrodes.  The charge is 

manifested as a voltage on the opposite side of the 

material.  This voltage is then amplified and used as 

output to report a positive contact.  The Fresnel lens in 

combination with the PIR detector also works in reverse, or 

if the human presence is cooler than the ambient 

temperature.  In the first case, (the human presence is 

warmer than ambient) the flux across the detector is 

positive.  If the human presence is cooler than the ambient 

temperature the flux across the detector is negative, but 

it will still drive a current and then a corresponding 

voltage is produced that can be amplified and used as 

output [Ref. 13].   
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Figure 23.  A typical PIR detector with a Fresnel lens 

attached (From [Ref. 13]). 
 

The PIR detector is designed to drive a device (siren 

or light) when it detects motion.  AGV does not currently 

use this feature.  In order to simplify the output as read 

by the BL2000, AGV has a hard wire connection from the 

light emitting diode (LED) on the PIR board.  Usually the 

LED is used to simply light up when motion is detected.  

AGV uses the voltage that the detector produces for the LED 

and reports that as a positive contact.  When the motion no 

longer exists, the LED takes a few seconds to settle back 

to a non-lighted state.  This is filtered out in the actual 

computer code for reporting a detection. 

4. Ultrasonic Motion Detector 

AGV is also equipped with a second, ultrasonic motion 

detector.  Figure 24 shows the detector mounted facing 
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outward from the side of AGV.  The ultrasonic motion 

detector operates on the same principles as the ultrasonic 

range finder.  It has a transmitter and a receiver.  The 

transmitter continuously sends out an ultrasonic wave at 40 

kHz (6 millimeter wave length).  The receiver then picks up 

any reflected wave and the circuitry amplifies it for the 

first time.  The detector constructs an envelope for the 

first signal received at the 40 kHz.  When there is no 

movement the envelope is simply a straight-line voltage.  

The circuit detects movement by recording anytime the 

signal goes outside of the envelope (the receiver picks up 

the wave that was out of phase with the original one) [Ref. 

14].  In testing, this sensor picked up movement at 

approximately 10 meters.  This circuit is designed to 

output a voltage of approximately 1.5 volts whenever it 

detects motion and zero volts when it does not.  This 

output signal is directly fed into the BL2000.  This sensor 

is greatly affected by the router when the router is 

transmitting information back to the user.  AGV uses 

computer code to filter out these false contacts.  

Additionally the mounting position (elevated and forward of 

the router antennas) helped to alleviate the problem. 
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Figure 24.  Side mounted ultrasonic motion detector. 

 

C. COMMUNICATION 

 AGV communicates via a standard 802.11GHz wireless 

router.  It uses the Netgear 240 Mbps, ultra fast Range Max 

wireless router.  The BL2000 has an ethernet cable 

connection and the dynamic C code has periodic functions 

that it sends back to the JAVA GUI when interfaced.  The 

connection with the computer is a standard TCP/IP 

interface.  The router has three extra ethernet cable 

connections that can be used for an external camera or any 

number additional components.  Figure 25 shows the router 

that AGV employs.   



 32

 
Figure 25.  AGV’s communication platform. 

 

D. BL2000 

 AGV’s computer processor is the BL2000 Wildcat from Z-

World.  The BL2000 has a single-board computer with a 

Rabbit 2000 microprocessor operating at 22.1 MHz.  There 

are 11 analog inputs and 2 analog outputs.  Additionally 

the BL2000 contains four serial ports [Ref. 15].  Figure 26 

shows the BL2000 employed by AGV.  The BL2000 retrieves 

input instructions from the user via the Java GUI and 

conversely sends information back to the user that is 

displayed on the GUI.  In autonomous mode the BL2000 

receives input (in the form of analog voltages) from the 

ultrasonic range finder and the IR rangers for collision 

avoidance.  Additionally, in detection mode it receives 

data from the motion detectors in order to report a human 

presence detection back to the user.  The BL2000 

incorporates all of the input and dynamic C code (discussed 

later) stored on the flash-ROM then maneuvers AGV or 

reports contact back to the user. 
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Figure 26.  BL2000 rabbit microprocessor. 

 

E. COMPASS 

 AGV employs a HMR3000 digital magnetic compass.  The 

compass has three magnetoresistive magnetic sensors for 

determining a heading to within +/- 0.5 degrees.  The 

compass is equipped with a liquid filled two-axis tilt 

sensor to provide tilt and roll data of up to +/- 40 

degrees.  Once calibrated, the compass compensates for 

distortion due to ferrous objects and stray fields.  The 

compass sends an ASCII output via the BL2000 for display on 

the JAVA GUI [Ref. 16].  The tilt and roll feature of the 

compass is displayed on the GUI, however the data are not 
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currently used by the BL2000 to affect any change in AGV’s 

behavior.  Figure 27 shows the compass. 

 

 
Figure 27.  Magnetic HMR 3000 digital compass. 

 

F. GLOBAL POSITIONING SYSTEM (GPS) 

AGV uses the Garmin GPS 16 LVS (Low Voltage System) 

exclusively for navigating (there is no back up dead 

reckoning system although one could be created).  Figure 28 

is the GPS employed by AGV.  The GPS sends AGV’s location 

through the BL2000 back to the GUI.  The location is in 

standard latitude and longitude coordinates [Ref. 18].  

Also included in its transmission is the number of 

satellites currently being tracked.  When navigating, AGV 

takes the current location and then determines the heading 

it needs to travel on to get to the new location (discussed 

later) [Ref. 3]. 

The GPS has the capability to utilize the WAAS (Wide 

Area Augmentation System) while in North America.  WAAS was 
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originally a system to improve the GPS position for 

aviation, but transitioned to also improve land based 

applications (reference spec sheet).  Currently there are 

two WAAS satellites in operation (one over the Atlantic and 

one over the Pacific Oceans) [Ref. 17].  The two satellites 

work in conjunction with the 25 ground stations to 

calculate possible GPS errors (clock drift, orbital errors, 

atmospheric delays, etc.).  The satellites broadcast the 

errors and the GPS receiver then compensates for them [Ref. 

3].  In testing, AGV utilizes the WAAS (showed by a 

“differential fix” in the GPS section of the GUI) about 

fifty percent of the time.   

 

 
Figure 28.  GPS 16 LVS. 

 

G. CAMERA 

 The detection portion of AGV employs the D-Link DCS-

900 internet camera.  The camera is cylindrical with 

dimensions of 2 ½ “ x 2 ½” x 2 ¾” and weighs 0.61 pounds.  
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It is a standard internet camera that plugs directly into 

the router with a stand-alone IP address.  The array size 

is 640x480, 320x240.  It has an auto frame rate along with 

automatic brightness and contrast control.  The focus is 

manual but in testing a standard setting was adequate.  The 

lens has a 6.0 mm focal length.  The camera is limited to 

daylight only (future versions of AGV will incorporate 

either thermal or IR images).  One of the biggest drawbacks 

of the camera is its 5-volt / 2.5A requirement [Ref. 19].  

Only the router requires an equivalent amount of current.  

Figure 29 shows the camera.  Currently the camera is 

mounted on AGV’s shelf, above the motion detectors (future 

locations will include a more protected area). 

 

 
Figure 29.  D-Link, DCS-900 camera mounted on AGV.  
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H. JAVA GUI (GRAPHICAL USER INTERFACE) 

 The Java GUI was originally written by Kubilay Uzun, 

an NPS Student [Ref. 21].  AGV employs the same basic 

program with minor modifications for different driving 

voltages and different text messages reported from 

additional sensors.  The interface allows the user to input 

up to 10 waypoints for AGV to navigate to (with the option 

of stopping or turning at each point).  It also allows the 

user to control AGV in manual mode.  The joystick option is 

extremely useful while investigating a particular area of 

interest.  The upper left portion of the interface (see 

Figure 30) displays all of the current compass and GPS 

data.  The lower left portion of the interface displays all 

of the current functions AGV is performing.  It also 

displays the detection statements while AGV is in detection 

mode.  Any standard graphical image can be displayed in the 

map (center) section of the interface.  In many tests a 

simple “Google Earth” map was incorporated into the 

interface.  The program allows the user to scale the map to 

the appropriate latitude and longitude locations.  Updates 

were made to the program to include a button to take a snap 

shot photo with the camera and to incorporate positive 

contact text messages from the motion detectors. 
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Figure 30.  Java Graphical User Interface (GUI). 
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IV. AGV PROGRAM 

The complete Dynamic C code is contained in the 

Appendix.  Figure 31 shows an outline of the program 

hierarchy.   

 
Figure 31.  Dynamic C program hierarchy with costatements 

included (Modified from [Ref. 3]). 
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A. MANUAL CONTROL 

 After the initialization functions for the IIC 

protocols and the communications setup, AGV’s program 

begins by determining if the user wants to put it in manual 

mode.  In manual mode, all other functions and costatements 

excluding updating the GPS position and compass heading are 

not utilized.  AGV’s BL2000 receives a signal from the user 

via the GUI (reference Figure 30).  If either the joystick 

mode or the driving buttons are employed then AGV is 

completely controlled by the user.  The Java program 

computes the voltages that AGV’s PWM circuit needs for the 

desired direction.  The BL2000 then outputs them to the PWM 

circuit (which drives the motor controllers and then the 

motors, reference section III. A. 4.).  The original 

version of the program had Bender stopped with a 50% duty 

cycle.  AGV will stop with approximately the same duty 

cycle, but each motor controller requires slightly 

different duty cycles to get its particular side to 

completely stop (the right side requires 2.45 volts from 

the BL2000 and the left side requires 2.40 volts).  

Additionally, the motors have a slight but audible whine 

noise when they are stopped in this fashion.  The problem 

was alleviated by having the BL2000 turn on the brake (or 

make pin B on the motor controllers go high) when the user 

sent a voltage that was within a small window that would 

have virtually stopped AGV anyway due to surface friction.  

B. GPS & COMPASS 

The compass and GPS are updated continuously 

regardless if AGV is in manual mode or operating 

autonomously.  The compass costatement receives the serial 
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data from the compass itself and converts it into a simple 

360-degree heading.  The data are then tokenized and sent 

back to the user.  There are possible error messages 

generated by the code.  For example, if the pitch and roll 

data are outside of the limitations for the compass to 

detect, an error message is generated.  Additionally, if 

the heading data is corrupt, an error message is also 

generated and sent to the user.  The BL2000 will still 

continue to try and receive appropriate data, but AGV will 

not be able to navigate autonomously with a compass error. 

 The GPS costatement works the same as the compass.  

The data the GPS sends include the latitude and longitude 

positions in one line.  The program breaks up the line and 

converts it into an updated location that is sent to the 

user.  If the GPS is not functioning or not updating for 

whatever reason, the program will continue to report the 

last known location for a short time.  The code then 

recognizes the data are not accurate.  It reports the GPS 

is not available to the user, and automatically places AGV 

in manual mode for the user to maneuver (and turns on the 

detection mode). 

C. WAYPOINT NAVIGATION 

 One of the best features of AGV is its ability to 

navigate to up to ten waypoints autonomously.  The user 

puts in the waypoints and sends them to AGV from the GUI.  

The waypoint data costatement then takes each of the 

waypoints, tokenizes the strings they came in and puts them 

in the correct order.  Once the code determines that it has 

received all useable waypoints, it takes AGV out of manual 

mode (and turns off the detection mode if it was  
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activated), sends a message to the user that AGV is now in 

autonomous mode, and sends the data to the navigation 

costatement. 

 The navigation costatement is the heart of AGV’s 

autonomous operation.  The code first determines that the 

user did not want AGV in manual mode after inputting the 

waypoints.  Simply sending waypoints to the BL2000 does not 

automatically mean AGV goes into autonomous mode.  If not 

in manual mode, the code begins by converting the latitude 

and longitude for the current location and the waypoints 

into decimal values in minutes.  This simplifies future 

calculations for the desired heading.  The code then 

computes the range to the first waypoint (actually in 

yards, but it could be converted to any units).  If the 

first waypoint does not fall within the range error the 

program then calculates the new heading that AGV needs to 

travel.  Once the new heading and range are determined, the 

code determines the heading error from its current heading 

and the new desired heading.  Currently the heading error 

allows for a 5-degree fluctuation.  For example, if the new 

heading is 250-degrees and the current heading is 247-

degrees, then the reported heading error comes back as 

zero.  The range error, set at three yards, operates on the 

same principle.  Therefore, if the range to the waypoint is 

less than three yards the program designates that as close 

enough and loads the next waypoint.  The navigation 

costatement is called throughout movement, but the actual 

voltages sent to the PWM circuit come from the PID 

statement.   
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The navigation statement has additional features that 

aid the user.  For example, once a waypoint is passed the 

program sends a message back to the GUI indicating that the 

waypoint has been cleared and AGV is proceeding to the next 

one.  The costatement has built in error reports that are 

sent to the user if problems arise with the GPS or compass 

data.  As standard procedure, AGV goes into manual mode and 

turns on the detection costatement once any error occurs.  

Additionally, the autonomous navigation can be interrupted 

at any time by the user and placed in manual mode. 

D. PROPORTIONAL INTEGRAL DERIVATIVE (PID) CONTROL 

AGV originally had four speeds that were just a 

percentage of the maximum speed for turning towards the 

appropriate heading.  The closer AGV got to the heading, 

the slower the wheels turned.  Additionally, AGV originally 

turned toward the heading like a pivot steering tank (one 

side of the wheels in reverse with the other side turning 

forward).  This proved to be problematic.  AGV has a 

maximum speed of approximately seven miles an hour, which 

is much greater than any of the previous robots in the 

SMART program.  AGV would begin to turn towards the correct 

heading, but would then greatly overshoot it.  The BL2000 

could not send the lower percentage speed fast enough to 

get the wheels to slow down in time.  Increasing the number 

of speeds or starting at a lower percentage was ineffective 

in controlling the turn.  

AGV now uses PID exclusively to control its autonomous 

movement.  AGV first maps the heading error into an 

equivalent voltage to send to the PWM circuit.  As an 

approximation, 3.5 volts to the PWM circuit is full speed 

forward.  2.42 volts stops AGV, and 1.0 volts puts AGV into 
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full speed reverse.  These voltages are approximate values 

independent of which side the motor controllers are 

controlling.  When AGV’s wheels are not in contact with any 

surface, one can see that these voltages are far from 

exact.  In developing the mapping equation, a simple linear 

relationship was used.  Mapping the full speed forward 

voltage to the absolute value of the heading error and then 

the stop voltage to a zero heading error gives Figure 32. 
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Figure 32.  Heading error mapped into the appropriate 

voltage. 
 
 The maximum absolute value heading error can only be 

180 degrees (which corresponds to the maximum forward 

voltage, 3.5 volts).  Starting with the simple equation for 

a straight line:  

y mx b= + . 

Equation 3.   Equation of a straight line. 
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The slope of the line is given by:  

180 0
3.50 2.42

m −
=

−
. 

Equation 4.   Slope of the Heading Error / Voltage line. 
 
The slope approximately equals 167 degrees per volt.  The 

intercept of the line is given by:  

( )( )180 2.42
3.5 2.42

b = −
−

. 

Equation 5.   Intercept of the Heading Error / Voltage 
line. 

 

The intercept equals a negative 403 degrees.  Therefore, 

the equation for a voltage given the heading error is 

simply:  

403
167

Heading ErrorVoltage +
= . 

Equation 6.   Forward voltage given a heading error. 
 

In the first trial AGV had no integral or derivative 

component of the PID.  The code simply multiplied the 

voltage equation by a gain factor to overcome the inertia 

of AGV and sent that voltage to the PWM circuit.   However, 

just proportional gain proved to be insufficient (or under 

damped).  When moving towards the right heading, AGV always 

had an offset.  When the gain was increased to overcome the 

inertia of AGV, the maneuver became chaotic.  AGV did not 

simply overshoot the heading on a consistent basis.  The 

processing time the program took to adjust the heading was 

slightly different depending what other costatements were 

active concurrently.  This, coupled with the possibility of 

different surfaces (all with different levels of friction), 
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caused the chaotic motion.  These trail and errors lead to 

the development of AGV’s current control system. 

 Leaving AGV in an under damped state and then adding 

an integral component for a gain factor was fairly 

successful.  Each time the program loops through the PID 

costatement it increases the amount of integral gain that 

AGV uses by a small amount.  This occurs up to 40 cycles.  

In indoor tests on a constant surface, AGV was able to find 

the correct heading with minimal oscillations.  However, 

once AGV moved outdoors, the ability to move to the correct 

heading became inconsistent. 

 AGV’s complete PID costatement combines proportional, 

integral, and derivative gains.  Additionally, through 

multiple trails on different surfaces, AGV performs much 

more consistently when the movement towards the correct 

heading happens while moving forward instead of “turning on 

a dime” or while stationary.  The final equation for the 

voltage sent to the PWM circuit is given by:   

 

( ) 403  403
167 167

Heading Error Heading ErrorVoltage P I Scalient D+ +
= + +

 

Equation 7.    PWM voltage. 
 
Scalient is a variable in the computer code that is an 

adjustable percentage of the total voltage sent.  The 

coefficients P, I, and D were experimentally determined to 

optimize the performance independent of the surface AGV 

traveled on.  After multiple tests on different surfaces 

the coefficients were determined as follows:  P = 1.1, I = 

(0.05)P, & D = (0.05)P.  Additionally, the tests showed 

that an optimal turn toward to the correct heading occurs 
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when one side of AGV goes forward from the voltage 

determined in Equation 7, while the other side of AGV 

continues to move forward, but with a voltage at 85% of 

Equation 7.  The PID costatement contains checks to ensure 

that the PWM circuit does not receive voltages that are 

more than the full speed forward voltage (approximately 3.5 

volts).  It also contains the same checks to ensure that 

the wheels never go into reverse while moving towards the 

appropriate heading.   

Determining the most efficient direction AGV should 

turn to move towards the correct heading is a simple 

exercise in geometry.  When drawn completely out, the 

exercise culminates with AGV turning left when:  

o 180Heading Error ≥  or 
o o0  180Heading Error< > − .   

Equation 8.   Heading error for a left turn. 
 
For all other cases AGV turns right to achieve the 

appropriate heading.  Allowing the heading error to be 

greater than 180 degrees or less than –180 degrees is a 

departure from the previous technique for calculating the 

correct voltage.  This is just bookkeeping task in the 

computer code. 

E. COLLISION AVOIDANCE   

 AGV utilizes the forward-looking ultrasonic range 

finder and the forward-looking IR rangers (see Figure 17) 

for collision avoidance.  The collision avoidance 

costatement is only referenced when AGV is autonomously 

navigating (not in manual control).  The costatement begins 

by calling the ultrasonic rangefinder to determine what 

objects are within the navigation path.  The ultrasonic 

range finder communicates with the BL2000 via an IIC 
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connection.  IIC is designed to incorporate a large number 

or sensors operating on only two lines of communication.  

Although AGV only currently has one IIC component, it could 

handle many more.  In a simplified form, IIC is nothing 

more than a communication via a clock and a data 

transmission and works in the following manner.  The BL2000 

provides the ultrasonic range finder with a standard square 

wave as a clock transmission.  When the BL2000 wants data 

from the ultrasonic range finder it has to go through a 

predetermined series.  The BL2000 writes a byte to the 

ultrasonic range finder (through the clock transmission) 

telling the range finder it wants data from it.  The range 

finder then sends an acknowledgement back to the BL2000 via 

the data transmission line.  The BL2000 then tells the 

range finder what type of data it wants from it (in AGV’s 

case that data is distance to objects in inches).  That 

transmission is again acknowledged.  The range finder then 

reads a byte (gets the range in inches) and the code 

assigns it to a variable that the BL2000 recognizes.   

 Throughout multiple tests, the ultrasonic range finder 

had a series of problems.  First, when the range finder did 

not detect any objects in its path (distances greater than 

20 feet), it reported a zero value for distance to an 

object.  A simple fix, assigning a value of 255 inches when 

the range finder returned a zero was implemented.  An 

additional problem that did not occur indoors, but did 

outdoors was false returns.  One in every approximately 20 

returns reported a false object.  After trying many 

different solutions, the code now takes three returns from 

the range finder and averages the three to give an 

approximate distance to objects.  Taking greater than three 
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returns would be optimal, but the time to loop through 

those returns proved to be too great to accomplish other 

missions.  Throughout the field tests, the ultrasonic range 

finder reporting an object at 30 inches proved to be enough 

time for AGV to react and move out of the way.   

 AGV also utilizes the three IR rangers (see Figure 17) 

in front to detect obstacles.  As discussed previously, the 

IR rangers are analog so their communication with the 

BL2000 is greatly simplified.  Each ranger is connected 

directly to one of the BL2000’s analog inputs.   At the 

completion of the ultrasonic range finders connection, the 

code references each of the IR rangers.  Through trial and 

error, voltages greater than 0.2 volts but less than 2.0 

volts allow AGV to turn away from an obstacle before 

contacting it.   

 If any of the front four sensors reports an obstacle 

within the determined threshold the code then references 

the side IR rangers to determine what direction AGV should 

turn in order to avoid the obstacle.  Whichever side has 

the most clearance (greatest distance to another obstacle), 

AGV turns in that direction.  The code has AGV momentarily 

stop (in practice this stop cannot be noticed), do an 

approximate 45-degree turn in the appropriate direction, 

and then drive forward at approximately three quarters 

speed.  At this point the collision avoidance statement is 

complete and AGV moves back into the navigation statement.  

However, if AGV did not clear the obstacle or if there is 

now another obstacle in its path it will detect it and 

start the process over again.   

 The code allows for the possibility that there may be 

an error in processing, or an obstacle that AGV simply did 
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not detect in time to alter its course in order to avoid 

it.  At approximately 2.0 volts and greater (from 

experiment, not theory) the IR rangers have an obstacle 

within 10-inches or closer and conversely when the 

ultrasonic range finder reports objects closer than 10-

inches, there is one (obviously).  Assuming the rear IR 

ranger reports clear, the code then has AGV go into full 

speed reverse for approximately one yard.  AGV then stops 

and again references the side IR rangers and the process is 

the same as before.  Ideally a bumper sensor would also be 

incorporated with this statement, but AGV does not 

currently have this feature.   

F. DETECTION 

 The detection mode consists of stopping AGV completely 

and beginning to take inputs from the motion detectors.  

AGV can turn on the detection mode in three different ways 

(reference Figure 8).  Once AGV completes the manual 

commands sent to it, assuming there are no subsequent 

autonomous commands, the detection mode automatically turns 

on.  Upon completion of its autonomous navigation, AGV 

pauses in order to prevent the motion detectors from 

reporting its own movement as contact, and then turns on 

the detection mode.  Additionally, if for any reason there 

is an error in navigation or if the compass or GPS do not 

function, AGV stops and turns on the detection mode. 

 The detection statement begins by turning the brake on 

to prevent any false contact reports from the motors.  The 

code then has the BL2000 read the voltages from the motion 

detectors.  In testing, both motion detectors had a 

tendency to report false contacts when mounted close to the 

router.  The current location (reference Figure 7) reduces 
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the effect but does not eliminate it.  Powering the motion 

detectors from a separate 9-volt battery also eliminated 

some of the interference.  As a hardware consideration, 

this is somewhat inconvenient, but a fully charged 9-volt 

battery can continuously power the motion detectors for 

over a month.  In testing, the PIR motion detector is 

affected less by the router than the ultrasonic motion 

detector.  The code has a single filter for the PIR 

detector.  The PIR detector has to detect motion eight 

times before it reports a positive contact.  For the PIR 

detector, the motion does not have to be continuous.   

 The ultrasonic motion detector is more prone to detect 

false contacts.  It has the same filter as the PIR detector 

but the motion for the ultrasonic detector must be 

continuous for eight loops through the detection 

costatement.  The router has a tendency to cause the 

ultrasonic motion detector to randomly put out a voltage 

(report a contact).  Testing showed that the two combined 

filters eliminated the majority of the false contact 

reports. 

 The detection statement keeps track of how many times 

the motion detectors report a contact.  When either of the 

detectors has a positive contact the code generates a text 

message that includes the total number of contacts that 

both of the detectors have detected.  This message is sent 

back the user and displayed in the lower left portion of 

the GUI (see Figure 30).  The user then has the choice of 

simply taking a snap shot photo of what AGV sees or turning 

to the streaming video portion of the GUI.  The snap shots 

are stored in a folder on the desktop of the user’s 

computer.  The streaming video has a delay of approximately 
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two seconds.  This delay makes driving AGV at a rapid rate 

difficult, but a slow traverse of the suspected enemy area 

is possible.  Ideally, AGV would leave the camera off until 

the motion detectors reported a possible contact, but this 

feature is not currently available.  Additionally, testing 

has shown that a button on the GUI that would clear the 

number of positive contacts the motion detectors 

accumulated would be a useful feature.  Currently, the only 

way to zero out the number of positive contacts is to click 

the stop button in the manual control section or to reset 

the BL2000.   

Additional motion detectors are needed to cover all 

directions a contact could come from.  AGV can turn towards 

the likely avenue of approach for IED emplacement, but  

ideally AGV would detect motion in all directions.  

Currently, AGV covers approximately 180 degrees (forward 

facing and to the right side). 
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V. RESULTS 

Partial results for the separate components of AGV 

were included in the above chapters.  However, some general 

analysis can be done by section.  The exterior of AGV is 

not currently suitable for the harsh dessert environment 

(or any outdoor environment).  Ideally, AGV will be 

contracted out to an engineering firm who will be able to 

reduce the actual size to approximately a brick.  AGV needs 

to look like its environment.  In the Iraqi theatre this 

means modeling basic trash on the side of the road.   

The wheels of AGV are rugged enough for most 

environments but the packing foam they are stuffed with 

could be improved.  No matter how tightly the packing is, a 

more uniform material would be optimal.  Possibly a liquid 

gel or even a hardened inner tube could be used.  This is 

most noticeable when AGV attempts to navigate on dirt or 

loose gravel. 

AGV’s battery was adequate for an initial prototype, 

but will not be suitable for the end state platform.  In 

the initial tests, 2000mAhr was sufficient for two hours of 

on station time.  However, once the GUI interface and the 

router were incorporated onto the platform, the on station 

time was reduced to approximately one hour (depending on 

how many waypoints AGV had to navigate to).  Additionally, 

once the camera was added the on station time was reduced 

even further to 30 minutes.  A lithium battery is probably 

the best solution.  However, in the short term an external 

digital switch written in the code to turn the camera on 

and off would suffice.  The camera could come on only when 

the motion detectors reported a possible contact and then 
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turn off after a predetermined amount of time, or after the 

detectors did not detect any further presence.  In the same 

principle, switches to the collision avoidance sensors 

could turn them off when AGV was stopped or in manual 

control.   

AGV’s autonomous navigation is the heart of its 

capabilities.  In AGV’s final test, the PID statement in 

the computer code works well when the battery is fully 

charged and the surface is known prior to entering an 

environment.  However, when the surface is drastically 

different than the norm (i.e. moving from concrete to moist 

soil) then AGV’s performance is greatly reduced.  

Additionally, when the battery begins to drop past a ¼ 

charge it affects the motors speed regardless of what speed 

the BL2000 tells the motor controllers to move at.  There 

is no easy fix for this problem.  A possible solution is to 

develop a program that can detect the resistance the wheels 

are under and then adjust the PID coefficients accordingly.  

Another solution may be to research for a compass that 

responds on the microsecond scale to give AGV adjustments 

in direction that are not delayed and affected by the 

terrain it has just traversed.   

AGV does not have a back up dead reckoning system to 

move autonomously to a waypoint.  In testing this was only 

a problem around large trees and tall buildings.  AGV would 

very rarely lose the GPS signal altogether, but frequently 

would lose its differential fix.  Although this is not 

critical for its operation, it does mean AGV’s position was 

only within +/-10 meters at best.  If AGV’s mission is to 

detect a presence in a general area, this position error 

will not greatly affect it.  However, if AGV is assigned to 
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a very specific location then the motion detectors may not 

reach out to the extent that the user needs them to.  

Additionally, when AGV was navigating autonomously with a 

fix that kept changing from differential to standard, the 

route it took to the waypoint would appear to be chaotic 

until the GPS was consistent.  If the GPS was inconsistent 

for any length of time (over 3 minutes) then there is a lot 

of wasted movement when AGV attempts to stop at its final 

destination.  Increasing the proximity error could help 

with this, but without significant advances in the GPS 

technology there is not an easy fix for this drawback. 

In the final test, AGV’s detection system was simply 

adequate.  The ultrasonic motion detector is significantly 

affected by the components on AGV itself, the router and 

the camera most noticeably.  Filtering out the false 

contacts is more of an art than a physics problem.  Once 

the proper filter works for just the onboard components, 

then the environment has to be considered.  Acoustic waves 

from any number of sources greatly affect the sensors 

performance.  There is a medium that can be reached so the 

sensor does not over report, and does not miss obvious 

motion contacts.  Unfortunately, for the ultrasonic sensor 

that medium only occurs when the contact is within a few 

meters of AGV.  The PIR motion detector is not affected by 

environmental noise and its filter can be adjusted to 

filter out almost everything but a thermal motion contact.  

In the future, moving to all PIR detectors should alleviate 

the false contacts or in not reporting an actual contact.   

The camera being continuously on was discussed 

earlier; however, there are other drawbacks.  The field of 

view is adequate for almost all situations, but the tilt of 
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the camera does not always correspond in optimally 

assessing a contact.  For example, in the final test when 

AGV detected a contact and the contact was close to the 

ground (i.e. digging a hole to place an IED) then the 

system worked well.  But, when the contact was simply 

moving in the area then the height of the person was too 

great to capture the face.  The positive is the contact is 

detected and a partial picture is obtained, but if the user 

desires to capture the complete description of the suspect 

the camera has to be tilted up.  A possible solution is the 

mount the camera on a pan and tilt servo (separate from 

moving the entire platform).  This solution is feasible, 

but adds additional processing time for the BL2000 and will 

add additional power requirements.  

Obstacle avoidance during autonomous navigation is 

essential for this platform.  Currently the system is 

insufficient and needs improvement.  Despite carefully 

defining the field of view for the forward facing sensors 

and ensuring there were overlap between them, some 

obstacles were reported before AGV could take action to 

avoid them.  Making AGV more rugged and incorporating a 

bump sensor will help minimize the effects of hitting an 

obstacle, but improvements in the basic system can still be 

made.  Additionally, far too often AGV detects an obstacle 

when none exists.  This causes the platform to continually 

have to correct its current heading and can make the 

autonomous navigation to waypoints look chaotic.  The 

ultrasonic range finder detects obstacles at almost double 

the range of the IR rangers.  However, the final test 

showed the ultrasonic range finder is susceptible to the 

same environmental noise that the ultrasonic motion 
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detector is.  Averaging the returns from the sensor did 

alleviate some of the false returns, but it reduced the 

range of the sensor to just beyond the range of IR rangers.  

Simple solutions may be to increase the number of IR 

rangers in the front spread or to research for another IR 

ranger that has a greater range.  Another solution may be 

to put a filter, either hardware or in the code, on the 

ultrasonic range finder to eliminate the false returns.  

Figure 33 details how the IR ranger matched its published 

data.  Figures 34 and 35 show how accurately the ultrasonic 

range finder reported distance to different objects both 

indoors and out.  The figures also show how inaccurate the 

range finder is when the ultrasonic motion detector is on. 
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Figure 33.  IR ranger output voltage versus the published 

output voltage from sharp. 
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Figure 34.  Outdoor object detection by the ultrasonic 

range finder.  
 

 
Figure 35.  Indoor object detection by the ultrasonic range 

finder. 
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The communication platform limits the range AGV can be 

from the user if the user wants instantaneous feedback.  

However, AGV will continually transmit its detection data, 

along with all of the navigational information regardless 

if the user is within range or not.  In the final test, AGV 

was left in a location while the GUI interface was moved 

out of range.  After moving back within range, the 

interface picked up the data and displayed the number of 

contacts that were received while the interface was not 

connected.  Although not ideal, this does show that 

continuous direct communication is not necessary.  There 

are current research projects that show promise in roving 

wireless networks able to deploy over large areas.  With 

just the standard 802.11G router, AGV could work well in 

that environment.  In the long term, AGV would move away 

from the standard router connection and be incorporated 

into existing communication networks for the Army and 

Marine Corps (Blue Force Tracker).   
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VI. FUTURE WORK & CONCLUSIONS 

A. FUTURE WORK 

 The majority of future work will be integrating AGV 

into the Blue Force Tracker communications network the Army 

uses or the Marine Corps equivalent.  Introductory research 

and contacts have shown that this is certainly possible 

without any major hardware overhauls and virtually no 

software adjustments.  Having each AGV appear as its own 

icon on the GUI of every friendly vehicle within in range 

is paramount.  With this integration, AGV could not only 

communicate with the direct user, but all other units and 

vehicles in the area of operations would know exactly what 

AGV sees on its current mission.   

 Integrating a new thermal camera is also a key 

component of AGV’s future development.  Although currently 

ordered for the SMART initiative, basic tests have to be 

conducted along with meeting additional software 

requirements.  The thermal camera is critical for AGV to 

perform its mission in the most likely of environments, 

limited visibility.   

 The sensor array for the obstacle avoidance is simply 

inadequate.  Future work in either improving the array 

through hardware and software or in designing new sensors 

altogether will be essential.  Detecting obstacles for 

avoidance when in fact none exist is not an issue if it 

only happens periodically.  However, when it occurs every 

few seconds, then AGV does not have the processing power to 

continue its mission. 

 The BL2000 is an excellent on board computer for a 

prototype, but may not be ideal for the end state platform.  
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The total processing time of the program is on the seconds’ 

time scale.  Utilizing Object Oriented Programmable 

Integrated Circuits (OOPic) would be an excellent way to 

take some of the basic functions away from the on board 

computer, freeing up valuable processing time.  This could 

bring the time down to the microseconds’ scale.  

Additionally, OOPics can greatly reduce the power 

consumption, giving AGV longer time on station.  The SMART 

initiative is researching the OOPic for use on all of their 

platforms. 

 The next generation of AGV will incorporate the 

majority of changes discussed previously.  However, the 

platform itself needs to be hardened and more than likely 

about twice the current size.  No matter how sophisticated 

the obstacle avoidance is, there are certain surfaces that 

AGV must always be able to traverse.  A larger and more 

rugged wheel design will be key in allowing AGV to move 

through light mud to loose gravel without a large 

adjustment to the PID coefficients.  Larger wheels will 

also increase the ground clearance.  This is important for 

movement over obstacles the avoidance system does not 

detect.   

B. CONCLUSIONS 

Overall, AGV accomplishes the mission the SMART 

initiative set for it.  Its current limitations are due in 

a large part to the hardware engineering inability by the 

prototype designer and the communications platform.  

However, even in the current form AGV can:  autonomously 

navigate to waypoints, avoid obstacles, investigate 

possible threats and then detect motion that triggers a 

visual camera.  The information is then relayed back to the 
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user and displayed on a fairly sophisticated interface.  

Hardware adjustments and additional software refinements 

are needed prior to AGV being fielded to the Army or Marine 

Corps.    

There is not one solution in combating the IED 

problem.  Every proposed solution has advantages and 

drawbacks.  AGV’s advantages can provide the user with a 

small, semi-autonomous, relatively inexpensive platform 

that can aid in over-watching the main supply routes where 

IEDs are typically placed.  Additionally, AGV can assist in 

over-watching a specific target for future action.  AGV’s 

drawbacks include limited on station time, limited field of 

view, and a limited communication range.  The SMART 

initiative believes that AGV can quickly be engineered for 

rapid fielding to combat units where the IED is an everyday 

reality. 
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APPENDIX DYNAMIC C CODE 
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/**********************************************************************
********* 
AGV_NAV_ver.c 
    AGV Nav is the navigation interface with the BL2000 processor used 
to 
        control the Physics Department robot known as AGV (Autonomous 
Ground 
        Vehicle).  Currently, the program compiles with five warnings 
        (Dynamic C 7.04P3). 
***********************************************************************
********* 
Version History: 
 
    --- Version 1 --- 
    July - September, 2004 
  CDR Jerry Stokes 
  LT Sean Niles 
  LT Irv Pollard 
  LT Jason Ward 
      LT Brett Williams 
 
    Changes: 
    This version implements the Sonar costatment, allowing Bender to 
react to obstacles in his path.  Algorithms to handle impediments to 
Bender's planned path have also been implemented.  Nav - pared down to 
handle only calculations of GPS positions and generating headings and 
ranges for following waypoint paths.  GPS is now initialized to only 
give 2 sentences (one cannot be turned off) so that data culling when 
parsing the GPS sentence is reduced.  WayPoint - algorithm was 
optimized and altered to allow the user to input an exact path desired.  
Previous versions used the closest waypoint as the next waypoint to 
which to drive.  Control - PID control was implemented as its own 
costatement, partly to alleviate the delay associated with taking 
manual control when Bender was performing calculations in Nav.   
Networking - Ports were shifted to 4001 and higher to avoid conflicts 
with reserved ports.  UDP is still implemented, however with greater 
throughput realized from 802.11g wireless hub, it may be advantageous 
to switch to TCP/IP in later versions.  IP addresses were shifted to 
192.168.0 domain for the wireless router.  Should future users decide 
to move Bender to the university network, static IP addresses will need 
to be obtained for the camera, Bender, and router. 
 
 --- Version 2 --- 
 Created for SE4015, Summer 2003 
 James Knoll 
 Kubilay Uzun 
 Robert Williams 
 
 This program was written to run on the BL2000 and control the 
Nav, Sensors, and Motors of Bender.  Compiles with two warning in 
Dynamic C 7.04P3.  Newer versions of Dynamic C will require 
modification in the networking since UDP has changed. 
 
   --- Version 3 --- 
   Created for the AGV, Summer and Fall 2006 
   Ben Miller 
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   This program converts the old Bender code to work with a wheeled 
robot.  The communication is now TCP/IP.  The PID is completely 
different along with the collision avoidance (there is a portion with 
IIC to control the ultrasonic sensor).  The navigation statement was 
modified slightly (all the voltages are now sent from the PID 
costatement).  There is a new detection costatement that did not 
previously exist.   
******************************************************************************* 
CONNECTIONS 
 
 Nav   to   Motor 
 dac1 <--->       //left side wheels 
 dac0 <--->       //right side wheels 
 
 Nav   to   GPS 
 tx2  RED 
 rx2  GRN 
 grnd  BLK 
 
 Nav   to   Compass 
 tx1  grn 
 rx1  red 
 grnd  BLK 
 
 
*******************************************************************************
/ 
 
//IIC Settings 
 
#define READDELAY 15 
#define MAX_SENTENCE 100 
 
 
//Network Connections 
 
#define MY_IP_ADDRESS   "192.168.1.81" 
#define INTERFACE_ADDRESS  "192.168.1.80" 
#define MY_NETMASK  "255.255.255.0" 
#define MY_GATEWAY  "192.168.1.1" 
 
#define WP_PORT 4002 
#define MAN_PORT 4001 
#define COMPASS_PORT 4004 
#define GPS_PORT 4003 
#define ERROR_PORT 4005 
#use "dcrtcp.lib" 
#memmap xmem 
 
//Serial Port Settings 
 
#define BINBUFSIZE 127 
#define BOUTBUFSIZE 127 
#define CINBUFSIZE 127 
#define COUTBUFSIZE 127 
 
//GPS Variables 
 
 double curr_lat; 
 double curr_lon; 
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 const int xmit_delay = 100; 
 
 char sentence[MAX_SENTENCE]; 
 char dir_string[2]; 
 
 typedef struct { 
  int lat_degrees; 
  int lon_degrees; 
  double lat_minutes; 
  double lon_minutes; 
  char lat_direction; 
  char lon_direction; 
 } GPSPosition; 
 
 GPSPosition current_pos;   // Declare new GPSPosition variable 
 
 const int gps_delay = 0.5; //seconds to delay between gps readings 
 
 int gps_error, gps_error_count; 
 
 const float pi = 3.14159; 
 
 const char GPS_Reset[]="$PGRMI,,,,,,,R\r\n";  //Unit reset 
 const char GPS_Sent_Clr[]="$PGRMO,,2\r\n";    //clears all output  

//sentences 
 const char GPS_GGA_Enable[]="$PGRMO,GPGGA,1\r\n";//enables the GGA  

  //sentence 
 
 unsigned long gps_wait_time; 
 const int gps_timeout = 1; 
 
//New Detection Statement Variables 
 char h[30]; 
 char c[12]; 
 int detect_flag, motion_flag, a, b, time_flag; 
 float motion1_volts, motion2_volts; 
 
//New PID Statement Variables 
 char s[12];   //compass inputs if you want to test the PID 
 char p[12]; 
 float turnvolts, fwdturnvolts; 
 float scale, scaleint, P, I, D; 
 int flag, flagint, compconv, k, sonarplus; 
 
//New Compass Statement Variable 
 float curr_hdg; 
 char compass_sentence[MAX_SENTENCE]; 
 int compass_error; 
 
 const int compass_delay = 10; //mili-seconds to delay between compass  

   //readings, this was 50 
const char init_str[] = "#BAD=8*7A\r\n"; //5 times per second, the first   

 //number was 11 
 
 int string_pos; 
 char input_char; 
 
 unsigned long compass_wait_time; 
 const int compass_timeout = 1; 
 
 int Compass_update; 
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//Communication Setup 
 
 word status, port; 
 longword host; 
 udp_Socket compass_data, gps_data, error_data, sonar_data; 
 sock_type wp_data, man_data; 
 char cmdBuf[1024]; 
 char cmdstr[20], *cmdptr; 
 char wptBuf[4096]; 
 char wptstr[500], *wptptr, *wpttmp; 
 char error_buf[200]; 
 
//Navigation Variables 
 
 const float brg_error = 5.0;  //Allowable Bearing Error 
 const float rng_error = 5.0;  //Allowable range error (in yards) 
 
 float lat_diff, lon_diff;   //The amount of Lat/Long (in Seconds and 
                                  //Decimal Seconds between Bender's  

 //current 
                                  //position and the next waypoint 

float theta;              //Angle (deg) from True North to next waypoint 
 float hdg_error;  //Angle (deg) from current heading to next waypoint 
 
 float new_hdg;                //The Desired heading in degrees 
 
 double rng, temp_rng;         //Range and temporary range (in yards) 
 
//Waypoint Variables 
 
 typedef struct 
 { 
  double lat; 
  double lon; 
  char  action; 
 }WP;                             //Define WP structure 
 
 WP waypoints[10];              //stores the list of waypoints 
       char passed_waypoint[10];    //Stores action value for passed waypoints 
 int curr_wp;                     //current wp 
 char *temp; 
 char *temp_lat, *temp_lon; 
 char *temp_action; 
 
 double lat, lon, wlat, wlon; 
 
// CTRL bools 
 
 int man_ctrl; 
 int GPS_updated; 
 
// Control Variables 
    
    const float PW_MAX = 3.50;    //Max pulse width yields max fwd speed 
    const float PW_STOP = 2.42;   //Pulse width that results in stop command 
    const float PW_REV = 1.50;    //Pulse width that results in max reverse 
    double Error;   //Variables for intermediate calculations of 
    double sumError;    //Running sum for integral error 
    double prevError[10];       //Variable equal to error from previous n time  

//steps 
    float lt_spd, rt_spd; //manual control variable, really could clean this up 
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    float spd; //Speed variable, need this for manual control, but not PID  
    const int rt_ch = 0;       //right side 
    const int lt_ch = 1;       //left side 
 
//The new IIC functions and protocols 
 
#ifndef i2c_SCL_H() 
#define i2c_SCL_H()   BitWrPortI(PEDR,&PEDRShadow,0,0) 
#define i2c_SCL_L()    BitWrPortI(PEDR,&PEDRShadow,1,0) 
#define i2c_SDA_H()   BitWrPortI(PEDR,&PEDRShadow,0,1) 
#define i2c_SDA_L()    BitWrPortI(PEDR,&PEDRShadow,1,1) 
#endif 
int i2c_clocks_per_us; 
 
#define cWAIT_5_us  asm ld a, (i2c_clocks_per_us) $\ 
               sub 3 $\ 
    ld b,a $\ 
   db 0x10, -2 
 
unsigned long t0; 
#define time 5 
 
//Collision Avoidance Variables 
 
float fright, fleft, front, lside, rside, rear; 
 
//////Begin the IIC protocol/////// 
 
void write_byte(char d) 
{ 
 int i; 
 for (i=0; i<8; i++) 
 { 
     for (t0=MS_TIMER;MS_TIMER<t0+time;); 
  if (d & 0x80) 
   {i2c_SDA_H();} 
  else 
   {i2c_SDA_L();} 
 //cWAIT_5_us; 
 
 i2c_SCL_H(); 
// cWAIT_5_us; 
   for (t0=MS_TIMER;MS_TIMER<t0+time;); 
 i2c_SCL_L(); 
// cWAIT_5_us; 
 
 d=d<<1; 
 } 
   i2c_SCL_L(); 
   i2c_SDA_H(); 
} 
 
int read_byte(char *ch) 
{ 
   auto char res,cnt; 
   i2c_SDA_H(); 
 
 for (cnt=0,res=0; cnt<8; cnt++) 
 { 
  i2c_SCL_H(); 
      while (BitRdPortI(PEDR,2)==0);//SCL Clock Stretching 
//  cWAIT_5_us; 
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      for (t0=MS_TIMER;MS_TIMER<t0+time;); 
      res<<=1; 
  if(BitRdPortI(PEDR,3)) res|=0x01; 
  i2c_SCL_L(); 
  //cWAIT_5_us; 
      for (t0=MS_TIMER;MS_TIMER<t0+time;); 
 } 
 *ch=res; 
   return 0; 
} 
void i2c_start_tx() 
{ 
 
 i2c_SCL_H(); 
 i2c_SDA_H(); 
   cWAIT_5_us; 
   i2c_SDA_L(); 
   cWAIT_5_us; 
   i2c_SCL_L(); 
 
} 
 
 
void i2c_stop_tx() 
{ 
 
 i2c_SDA_L(); 
   for(t0=MS_TIMER;MS_TIMER<t0+time;); 
   //cWAIT_5_us; 
 i2c_SCL_H(); 
   cWAIT_5_us; 
 i2c_SDA_H(); 
} 
 
 
void i2c_init() 
{ 
 int i; 
 void i2c_stop_tx(); 
 i2c_SDA_H(); 
 cWAIT_5_us; 
 i2c_SCL_L(); 
 for (i=0; i < 3; i++) 
 { 
  i2c_stop_tx(); 
 } 
} 
 
 
void giveack() 
{ 
 i2c_SDA_L(); 
   cWAIT_5_us; 
 i2c_SCL_H(); 
 for(t0=MS_TIMER;MS_TIMER<t0+200;); 
   //cWAIT_5_us; 
 i2c_SCL_L(); 
   cWAIT_5_us; 
 i2c_SDA_H(); 
} 
 
 



 72

void getack() 
{ 
 i2c_SDA_H(); 
 while (BitRdPortI(PEDR,3) == 1); 
 if (BitRdPortI(PEDR,3) == 1)i2c_stop_tx();      //originally uncommented 
 i2c_SCL_H(); 
   for (t0=MS_TIMER;MS_TIMER<t0+time;); 
   //cWAIT_5_us; 
 i2c_SCL_L(); 
} 
 
///////End IIC and collision avoidance//////// 
     
// Function Prototypes 
 
int compass_get_hdg(char sentence[MAX_SENTENCE]); 
 
int gps_get_position(GPSPosition *newpos, char *sentence); 
 
int gps_parse_coordinate(char *coord, int *degrees, float *minutes); 
 
int ERROR_function(float new_hdg); 
 
void msDelay (long sd); 
 
 
///////Main Program/////// 
 
main() 
{ 
 
 int i; 
 
//Initialization 
  
 char sonar; 
   brdInit(); 
   i2c_init(); 
 
 
 //Communication Initialization 
  
 sock_init(); 
 if (!(host = resolve(INTERFACE_ADDRESS))) { 
  exit(3); 
 } 
 
 if (!udp_open(&error_data, ERROR_PORT, 0xffffffff, ERROR_PORT, NULL)) { 
  exit(3); 
 } 
 sock_mode( &error_data, TCP_MODE_ASCII); 
 sock_mode( &error_data, UDP_MODE_NOCHK); 
 
 if (!udp_open(&wp_data, WP_PORT, 0xffffffff, WP_PORT, NULL)) { 
  sock_puts(&error_data, "$Unable to open WP UDP session\n"); 
  exit(3); 
 } 
 sock_mode( &wp_data, UDP_MODE_NOCHK); 
 
 if (!udp_open(&man_data, MAN_PORT, 0xffffffff, MAN_PORT, NULL)) { 
  sock_puts(&error_data, "$Unable to open MANUAL UDP session\n"); 
  exit(3); 
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 } 
 sock_mode( &man_data, UDP_MODE_NOCHK); 
 
 if (!udp_open(&compass_data, COMPASS_PORT, 0xffffffff, COMPASS_PORT, 
NULL)) { 
  sock_puts(&error_data, "$Unable to open COMPASS UDP session\n"); 
  exit(3); 
 } 
 sock_mode( &compass_data, TCP_MODE_ASCII); 
 sock_mode( &compass_data, UDP_MODE_NOCHK); 
 
 if (!udp_open(&gps_data, GPS_PORT, 0xffffffff, GPS_PORT, NULL)) { 
  sock_puts(&error_data, "$Unable to open GPS UDP session\n"); 
  exit(3); 
 } 
 sock_mode( &gps_data, TCP_MODE_ASCII); 
 sock_mode( &gps_data, UDP_MODE_NOCHK); 
 
 sock_puts(&error_data, "$Sockets are established\n"); 
 
 if (sock_recv_init( &wp_data, wptBuf, (word)sizeof(wptBuf))) { 
  sock_puts(&error_data, "$Could not enable WP buffer.\n"); 
  exit(3); 
 } 
 if (sock_recv_init( &man_data, cmdBuf, (word)sizeof(cmdBuf))) { 
  sock_puts(&error_data, "$Could not enable MAN buffer.\n"); 
  exit(3); 
 } 
 
 
 //Motor Initialization 
  
      anaOutVolts(rt_ch, PW_STOP); 
      anaOutVolts(lt_ch, PW_STOP); 
 
 //Flag Initialization 
  
  man_ctrl = 1; 
  GPS_updated = 0; 
  Compass_update = 0; 
 
 //Detection Initialization 
  
  time_flag = 0; 
  detect_flag = 1; 
  motion_flag = 0; 
  a = 0; 
  b = 0; 
 
 //Compass Initialization 
  
  serBopen(9600);  //BAUD rate 
  serBwrFlush(); 
  serBputs(init_str); 
 
 //GPS Initialization 
  
  serCopen(9600);           // Open serial port C 
  serCwrFlush();            // Flush serial port C Buffer 
  serBputs(GPS_Reset);      // Send Reset signal to GPS Receiver 
  serBputs(GPS_Sent_Clr);   // Send Clear signal to GPS Receiver 
  serBputs(GPS_GGA_Enable); // Send GGA Sentence enable signal 
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                                  //    (position info) 
 
   //PID Initialization 
 
  //printf("Enter new heading:  ");  //These are just for testing 
  //new_hdg = atof(gets(s)); 
  //printf("Enter the desired Gain 1.0 to 1.3:  "); 
  //P = atof(gets(p)); 
  P = 1.10; 
  I = 0.05*P;   
  D = 0.05*P;   
 
 //Control Initialization 
  
       sumError = 0.0; 
       for (i = 0; i < 10; i++) prevError[i] = 0.0; 
 
  //Turn the Brake on Initially 
   
     digOut(0,1); 
 
  ///////Main Loop/////// 
   
 while (1) 
 { 
  tcp_tick(NULL); 
   
  ///////Recieve Manual Control Data 
    
  costate 
  { 
   waitfor(sock_recv( &man_data, cmdstr, 
(word)sizeof(cmdstr)));  
 
   digOut(0,1);  //turn the brake on initially if it wasn't 
already 
   detect_flag = 1;  //turn off the dectection 
   motion_flag = 0;  //reset the motion flag if AGV moves 
    
   //Tokenize the string and convert to integers 
   lt_spd = atof(strtok(cmdstr, " ")); 
   rt_spd = atof(strtok(NULL, "/n")); 
 
   if ((rt_spd > 2.6) || (lt_spd > 2.6) || (rt_spd < 2.24) || 
(lt_spd < 2.24)) 
    { 
    digOut(0,0); 
    detect_flag = 0; 
    } //turn off brake if get enough voltage 
   
   //Voltage to the motors (could clean this up) 
    
   anaOutVolts(rt_ch, rt_spd); 
   anaOutVolts(lt_ch, lt_spd); 
 
   if (!man_ctrl) 
   { 
    sprintf(error_buf, "$manual control data received, in 
manual control, detection is off\n", curr_wp); 
    sock_puts(&error_data, error_buf); 
   } 
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   //Update the flags 
    
   man_ctrl = 1; 
 
   //flush prevError array so next nav order will have minimum 
error when it begins 
    
   for (i = 0; i < 10; i++) prevError[i] = 0.0; 
 
  }//Recieve Manual Data 
 
 
  ///////Compass 
  
  costate 
  { 
   waitfor ( DelayMs(compass_delay)); 
 
   serBrdFlush(); 
   string_pos = 0; 
 
   input_char = serBgetc(); 
 
   //find begining of sentence 
    
   compass_wait_time = SEC_TIMER + compass_timeout;  

//timeout if compass not working 
   while (input_char != '$') 
   { 
    if (SEC_TIMER > compass_wait_time) abort; 
    input_char = serBgetc(); 
    //printf("%c",input_char); 
    msDelay(READDELAY); 
   } 
   //printf("\n"); 
    
   //read the sentence 
    
   while (input_char != '*' ) 
   { 
 
     compass_sentence[string_pos] = input_char; 
     string_pos++; 
     if(string_pos == MAX_SENTENCE) 
      string_pos = 0; //reset string large 
 
    input_char = serBgetc(); 
    //printf("%c",input_char); 
    msDelay(READDELAY); 
   } 
 
   compass_sentence[string_pos] = 0; //add null 
   sock_puts(&compass_data, compass_sentence); 
   //tcp_tick(NULL); 
 
   if((compass_error = compass_get_hdg(compass_sentence)) !=0) 
   { 
   sprintf(error_buf, "$Compass Error: %d\n",compass_error); 
    sock_puts(&error_data, error_buf); 
    //tcp_tick(NULL); 
 //printf("$Compass Error: %d\n %s\n",compass_error,compass_sentence); 
   } 
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   else 
   { 
    //printf("Current heading: %f\n", curr_hdg); 
    Compass_update = 1; 
   } 
 
  //curr_hdg = 0.0;  //testing purposes 
  }//Compass 
 
 
  ///////Recieve WP Data 
   
  costate 
  { 
  waitfor(sock_recv( &wp_data, wptstr, (word) sizeof(wptstr))); 
 
   //find begining of string 
    
    wptptr = wptstr;   //assign a pointer 
            while (*wptptr != '$')   //Step through until begin string 
    wptptr++; 
 
    wptptr++; 
 
   //Tokenize 
    
   temp_lat = strtok(wptptr, " "); 
   temp_lon = strtok(NULL, " "); 
   temp_action = strtok(NULL, " "); 
 
            for (i = 0; i < 10; i++) 
            { 
                if ((temp_lat == 0 && temp_lon ==0) || 
                    waypoints[i].action != "P") 
                { 
             waypoints[i].lat = strtod(temp_lat, NULL); 
           waypoints[i].lon = strtod(temp_lon, NULL); 
           waypoints[i].action = *temp_action; 
                 //printf("wp%d: %f %f %c\n", i, waypoints[i].lat, 
waypoints[i].lon, waypoints[i].action); 
         } //End if Statement 
 
             temp_lat = strtok(NULL, " "); 
       temp_lon = strtok(NULL, " "); 
       temp_action = strtok(NULL, " "); 
    }//End for loop 
 
   curr_wp = 0;  //Resets current WP to 1st waypoint. If this 
is an update to 
                          //waypoints, Nav will increment curr_wp until a good 
                          //waypoint is there. 
 
   //update the flags 
 
   man_ctrl = 0; 
 
   sprintf(error_buf, 
                    "$WP's recieved.  In AUTO NAV and preceeding to WP %d\n", 
                    curr_wp); 
   sock_puts(&error_data, error_buf); 
  }//End Waypoint Costatement 
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  ///////GPS 
 
  costate 
  { 
   waitfor (DelaySec(gps_delay)); 
   serCrdFlush(); 
   string_pos = 0; 
   input_char = serCgetc(); 
 
   //find begining of sentence 
    
   //printf("\n"); 
   gps_wait_time = SEC_TIMER + gps_timeout; //timeout if gps  

   not sending data 
   while (input_char != '$') 
   { 
    if (SEC_TIMER > gps_wait_time) abort; 
    input_char = serCgetc(); 
    //printf("%c",input_char); 
    msDelay(READDELAY); 
   } 
 
   while ((input_char != '\r') && (input_char !='\n')) 
   { 
    sentence[string_pos] = input_char; 
    string_pos++; 
    if(string_pos == MAX_SENTENCE) 
     string_pos = 0; //reset string if too large 
 
    input_char = serCgetc(); 
    msDelay(READDELAY); 
   } 
   sentence[string_pos] = 0; 
   sock_puts(&gps_data, sentence); 
   //tcp_tick(NULL); 
   gps_error = gps_get_position(&current_pos, sentence); 
   if ((gps_error == 0) || (gps_error == -1)) 
    gps_error_count = 0; 
   else 
   { 
    gps_error_count ++; 
 
    //Stop AGV and place in manual control if BAD  

  position data 
                //        for 6 times (1 minute) 
    if ((gps_error_count > 6) && man_ctrl == 0) 
    { 
     sock_puts(&error_data, 
                      "$GPS error count exceeded. AGV in MANUAL CONTROL.\n"); 
     tcp_tick(NULL); 
     digOut(0,1); 
      
     //update flags for manual control 
      
     man_ctrl = 1; 
     detect_flag = 1; 
     abort;     //still parse if -1 
    } 
   } 
 
   if (1)//   (gps_error == 0)|| (gps_error == -1)) 
   { 
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    GPS_updated = 1; 
    curr_lat=(current_pos.lat_degrees + 
(current_pos.lat_minutes/60)); 
    curr_lon=(current_pos.lon_degrees + 
(current_pos.lon_minutes/60)); 
 
   } 
 
 
  }//GPS 
 
       /***** Passes heading error and range to CTRL costatement 

* Nav**** and uses error function to determine error from 
       ***** new_hdg and curr_heading*/ 
 
      costate 
      { 
   if (man_ctrl) abort; 
      
         if (GPS_updated)   //Navigates to new waypoint 
        { 
    motion_flag = 0;  //reset the motion flag if AGV is  

    //going to move 
 
                 lat = 60 * curr_lat;  //converts latitude into 
                                          //Minutes and decimal minutes 
         lon = 60 * curr_lon;             //converts longitude into 
                                                 //Minutes and decimal minutes 
                wlat = 60 * waypoints[curr_wp].lat;  //Converts waypoint values 
                wlon = 60 * waypoints[curr_wp].lon;  //to decimal minutes 
     //printf("lat: %g\tlon: %g\n", lat, lon); 
     //printf("wlat: %g\twlon: %g\n", wlat, wlon); 
 
                rng = sqrt((((2000 * wlat) - (2000 * lat)) * ((2000 * wlat) - 
                      (2000 * lat))) + (((1600 * wlon) - (1600 * lon)) * 
                      ((1600 * wlon) - (1600 * lon)))); 
 
                if (rng <= rng_error)  //When close enough to waypoint, action 
                                      //code takes effect and next waypoint 
                                      //is loaded 
 
                { 
 
                 switch (waypoints[curr_wp].action) 
     { 
                     case 'T':          //Go to next waypoint 
                     { 
                         passed_waypoint[curr_wp] = 'T';  //Stores action code  

    //in temp array 
                         waypoints[curr_wp].action = 'P';   

//Changes action code to indicate WP has been passed 
                         sock_puts(&error_data, "$Proceeding to next WP\n"); 
                         curr_wp++; 
 
          while ((waypoints[curr_wp].lat == 0) && 
             (waypoints[curr_wp].lon == 0)) 
       {                                 
//checks for valid WP 
                              curr_wp++; 
 
            if (curr_wp == 10) 
            { 
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                                sock_puts(&error_data, "$No Valid WP Found\n"); 
                                   tcp_tick(NULL); 
                                   man_ctrl = 1; 
                                   detect_flag = 1; 
                                   abort; 
                              }//End if 
                         }//End while 
 
       break; 
      }//End case 'T' 
 
                     case 'H':              //Start from beginning again 
      { 
                          for (i = 0;i < 10;i++)   //Reloads prior action codes 
                          { 
                              waypoints[i].action = passed_waypoint[i]; 
                          } 
                     sock_puts(&error_data, "$Proceeding back to home WP. \n"); 
           curr_wp = 0; 
 
           while ((waypoints[curr_wp].lat == 0) && 
       (waypoints[curr_wp].lon == 0)) 
                          {                 //checks for valid WP 
 
            curr_wp++; 
 
         if (curr_wp == 10) 
                              { 
                                sock_puts(&error_data, "$No Valid WP Found\n"); 
                                  tcp_tick(NULL); 
                                  man_ctrl = 1; 
                                  detect_flag = 1; 
                                  abort; 
                               }//End if 
                 }//End while 
 
        break; 
                     }//End case 'H' 
 
                     case 'S':              //Stop 
                     { 
                       digOut(0,1); //Stop AGV 
         
    for (i = 0; i < 10; i++) //Clears the Waypoint array 
                         { 
                              waypoints[i].lat = 0; 
                              waypoints[i].lon = 0; 
                              waypoints[i].action='T'; 
                          }//End for loop 
 
                          sock_puts(&error_data, 
     "$Destination Achieved, Waypoints cleared\n"); 
                          tcp_tick(NULL); 
                          man_ctrl = 1; 
                          detect_flag = 1; 
                          abort; 
      }//End case 'S' 
 
                     case 'C':  //Turn in a circle then proceed to next WP,  

     //really don't use this 
      { 
                          curr_wp++; 
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                          while ((waypoints[curr_wp].lat == 0) && 
         (waypoints[curr_wp].lon == 0)) 
           {                //checks for valid WP 
                               curr_wp++; 
 
          if (curr_wp == 10) 
                               { 
                                sock_puts(&error_data, "$No Valid WP Found\n"); 
                                    tcp_tick(NULL); 
                                    man_ctrl = 1; 
                                    detect_flag = 1; 
                                    abort; 
                                }//End if 
                 }//End while 
 
           break; 
         }//End case 'C' 
 
            case 'P':          //Check for passed waypoints 
                     { 
                       curr_wp++; //AGV ignores this point and goes to next one 
                          while ((waypoints[curr_wp].lat == 0) && 
              (waypoints[curr_wp].lon == 0)) 
                          {                 //checks for valid WP 
                               curr_wp++; 
 
          if (curr_wp == 10) 
                               { 
                                sock_puts(&error_data, "$No Valid WP Found\n"); 
                                   tcp_tick(NULL); 
                                   man_ctrl = 1; 
                                   detect_flag =1; 
                                   abort; 
                               }//End if 
                          }//End while 
 
           break; 
      }//End case 'P' 
 
                     default:            //Indicates and invalid action code 
                     { 
                  sprintf(error_buf, "$Invalid action for WP # %d\n", curr_wp); 
        sock_puts(&error_data, error_buf); 
                          tcp_tick(NULL); 
 
                          digOut(0,1);  //Stop AGV 
                          man_ctrl = 1; //in manual control 
          detect_flag = 1; 
                          abort; 
      }//End default case 
     }//End Switch 
 
                 if (curr_wp > 9) //Action for last WP invalid. 
                 { 
      digOut(0,1);  //Stop AGV 
        man_ctrl = 1;  //in manual control 
      detect_flag = 1; 
                      sock_puts(&error_data, "$Invalid action for wp 9\n"); 
                      tcp_tick(NULL); 
                      abort; 
     }//End if (curr_wp>9) 
 



 81

                 }//End if (rng < rng_error) 
 
              //If range not within error, calculate new heading 
 
                // 3600 converts lat_diff and lon_diff to decimal seconds for 
                // accuracy 
                lat_diff = 3600 * (waypoints[curr_wp].lat-curr_lat); 
                lon_diff = 3600 * (curr_lon - waypoints[curr_wp].lon); 
                //printf("wp0_lat:  %g\twp0_lon: %g\n", waypoints[curr_wp].lat,  

  //waypoints[curr_wp].lon); 
                //printf("lat_diff: %g\tlon_diff: %g\n", lat_diff, lon_diff); 
 
                // determine theta in degrees 
                theta = atan((lat_diff) / (lon_diff)) * (180 / pi); 
                //printf("theta: %g\n", theta); 
 
                // waypoint located in positive y-axis 
                if ((lon_diff == 0) && (lat_diff > 0)) 
                    new_hdg = 0; 
 
                //waypoint is located in negative y-axis 
                else if ((lon_diff == 0) && (lat_diff < 0)) 
                    new_hdg = 180; 
 
                //waypoint is located in positive x-axis 
                else if ((lon_diff > 0) && (lat_diff == 0)) 
                    new_hdg = 90; 
 
                //waypoint is located in negative x-axis 
                else if ((lon_diff < 0) && (lat_diff == 0)) 
                    new_hdg = 270; 
 
                //waypoint is located in the first or fourth quadrant 
                //(0-90 or 270-0) 
                else if ((lon_diff > 0) && (lat_diff != 0)) 
                    new_hdg = 90 - theta; 
 
                //waypoint is located in the second or third quadrant 
                //(90-180 or 180-270) 
                else if ((lon_diff < 0) && (lat_diff != 0)) 
                    new_hdg = 270-theta; 
 
                hdg_error = ERROR_function(new_hdg); 
                tcp_tick(NULL); 
 
               }//End if (GPS_updated) 
              }//End NAV costate 
 
 
  ///////PID CONROL 
 
  costate 
  { 
       waitfor(!man_ctrl); 
 
 if ((hdg_error >= 180.0) || ((hdg_error > -180.0) && (hdg_error < 0.0))) 
{flag = 1;}  
    else {flag = 0;} 
    if (hdg_error == 0.0) {flag = 2;} //just sets a dummy 
number to flag 
 
   //calculate scale constant 



 82

    
   compconv = fabs(hdg_error); 
   if (compconv > 180.0) {compconv = 360.0 - compconv;} 
   scale = ((compconv*(PW_MAX - PW_STOP))/180.0) + PW_STOP;   
//related all of this to max and stop voltages, check this 
   scaleint = scale + scaleint; 
   if(flagint > 40){scaleint = 0.0;} 
   flagint++; 
 

if ((!(hdg_error == 0.0)) && (rng > 
rng_error)) 

     { 
      
   //Translate this into an equivalent forward voltage 
   turnvolts = (P * scale) + (I * scaleint) + (D * scale); 
     //Do not send more than we put out 
     if(turnvolts > PW_MAX){turnvolts = PW_MAX;} 
     //Slower turn voltage for the other side 

fwdturnvolts = 0.85*turnvolts;   //changed 
//from 0.9 on 27 July, seems to work better 

     //Do not ever let the wheels go in reverse 
    if(fwdturnvolts < PW_STOP){fwdturnvolts = PW_STOP;} 
 
    //printf("The compass error is:  %f\n", hdg_error); 
   //printf("The forward voltage is:  %3.1f\n", turnvolts); 
   //printf("The slower voltage is:  %3.1f\n", fwdturnvolts); 
 
     detect_flag = 0;   
     digOut(0,0);  
      
     //turn logic 
     if(flag == 0) 
      { 
      anaOutVolts(rt_ch, fwdturnvolts); 
      anaOutVolts(lt_ch, turnvolts); 
      } 
     if(flag == 1) 
      { 
      anaOutVolts(rt_ch, turnvolts); 
      anaOutVolts(lt_ch, fwdturnvolts); 
      } 
     //if(hdg_error == 0.0) 
      //{ 
      //printf("we made it\n"); 
      //anaOutVolts(rt_ch, PW_STOP); 
      //anaOutVolts(lt_ch, PW_STOP); 
      //} 
 

}//ends if for heading error and range greater 
//than range error 

 
     else 
     { 
     //send the right voltages to the wheels if no 
//heading error and the range is greater than the delta 
 
     detect_flag = 0;   
     digOut(0,0); 
      
     anaOutVolts(rt_ch, PW_MAX); 
     anaOutVolts(lt_ch, PW_MAX); 
     } 
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        }//end PID costate 
 
 ///////Collision Avoidance 
 
    costate 
  { 
 
      waitfor(!man_ctrl); 
 
    
    //Sonar Itself 
 
    k = 0; 
    sonarplus = 0; 
    
   for (k=0; k<3; ++k) 
    { 
    i2c_start_tx(); 
    write_byte(0xE0); 
    getack(); 
    write_byte(0x00); 
    getack(); 
    write_byte(0x50); 
    getack(); 
    cWAIT_5_us; 
    i2c_stop_tx(); 
    for(t0=MS_TIMER;MS_TIMER<t0+65;); 
    i2c_start_tx(); 
    write_byte(0xE0); 
  getack(); 
    write_byte(0x03); 
    getack(); 
    i2c_start_tx(); 
    write_byte(0xE1); 
    getack(); 
    read_byte(&sonar); 
    //printf("Sonar Inches: %d\n",read); 
    i2c_stop_tx(); 
    if (sonar == 0) 
     { 
     sonar = 255; 
     }  //this takes care of the sonar equal to zero when there is no  

//return, objects 20 plus feet away 
  sonarplus = sonarplus + sonar; 
  } 
 sonarplus = (sonarplus/3);  //this averages three sonar readings 17 AUG 
 
      
   //IR Rangers 
   fright = anaInVolts(3); 
   front = anaInVolts(4); 
   fleft = anaInVolts(5); 
   rear = anaInVolts(0); 
 
   if ((front > 0.2 && front <= 2.0) || (fright > 0.2 && fright <= 2.0) || 
(fleft > 0.2  && fleft <= 2.0) || (sonarplus < 30 && sonarplus >= 10)) 
    { 
      lside = anaInVolts(2); 
    rside = anaInVolts(1); 
      if (lside < rside) 
       { 
         anaOutVolts(lt_ch, PW_REV); 
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         anaOutVolts(rt_ch, PW_MAX); 
         msDelay(500); 
         anaOutVolts(lt_ch, (PW_MAX*0.82)); 
         anaOutVolts(rt_ch, (PW_MAX*0.82)); 
         } 
      if (rside < lside) 
       { 
         anaOutVolts(rt_ch, PW_REV); 
         anaOutVolts(lt_ch, PW_MAX); 
         msDelay(500); 
         anaOutVolts(lt_ch, (PW_MAX*0.82)); 
         anaOutVolts(rt_ch, (PW_MAX*0.82)); 
         } 
  } 
   else if ((front > 2.0 || fright > 2.0 || fleft > 2.0 || sonarplus < 10.0) && 
(rear < 1.0)) 
    { 
      anaOutVolts(lt_ch, PW_REV); 
      anaOutVolts(rt_ch, PW_REV); 
      msDelay(1000); 
      anaOutVolts(lt_ch, PW_STOP); 
      anaOutVolts(rt_ch, PW_STOP); 
      lside = anaInVolts(2); 
    rside = anaInVolts(1); 
      if (lside < rside) 
       { 
         anaOutVolts(lt_ch, PW_REV); 
         anaOutVolts(rt_ch, PW_MAX); 
         msDelay(500); 
         anaOutVolts(lt_ch, (PW_MAX*0.82)); 
         anaOutVolts(rt_ch, (PW_MAX*0.82)); 
         } 
      if (rside < lside) 
       { 
         anaOutVolts(rt_ch, PW_REV); 
         anaOutVolts(lt_ch, PW_MAX); 
         msDelay(500); 
         anaOutVolts(lt_ch, (PW_MAX*0.82)); 
         anaOutVolts(rt_ch, (PW_MAX*0.82)); 
         } 
      } 
 
   //printf("Front IR = %f\n", front); 
   //printf("Front Right IR = %f\n", fright); 
   //printf("Front Left IR = %f\n", fleft); 
   //printf("Left Side IR = %f\n", lside); 
   //printf("Right Side IR = %f\n", rside); 
   //printf("Rear IR = %f\n\n", rear);  
 
   }   //Collision Avoidance Costatement 
 
 
///////Detection Mode Costatement 
 
 costate 
  { 
       if (detect_flag == 1) 
    { 
     
         digOut(0,1); 
        motion1_volts = anaInVolts(6); 
        motion2_volts = anaInVolts(7); 
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        //++time_flag; 
      //sprintf(error_buf, "$I'm in here %d times", time_flag); 
    //sock_puts(&error_data, error_buf); 
    

//this filters out the false contacts as the motion 
//detectors settle down 

     
        if (motion1_volts >= 1.0) {++a;} 

if (motion2_volts <= 1.0) {++b;}  //changed this on 
//21 SEP, because of wiring 

    if (motion2_volts > 1.0) {b = 0;} 
     
    if (a >= 8) 
     {      
     ++motion_flag; 
     sprintf(error_buf, "$Got Haji %d times (front)", motion_flag); 
     sock_puts(&error_data, error_buf); 
         a = 0; 
         } 
          
    if (b >= 6) 
     {      
     ++motion_flag; 
     sprintf(error_buf, "$Got Haji %d times (side)", motion_flag); 
     sock_puts(&error_data, error_buf); 
         b = 0; 
         } 
        } //end if 
      else {abort;} 
       
 }  //end detection costate 
 
    
 
 }//while(1) 
 
 
}//main 
 
 
//////////////////////////////////////////////////////////////////// 
 
 
/* START FUNCTION DESCRIPTION ******************************************** 
compass_get_hdg 
 
SYNTAX:  int compass_get_data(); 
 
KEYWORDS:      compass 
 
DESCRIPTION:   Parses a sentence to extract heading data. 
  This function is able to parse HPR data from a 
  HMR3000 Digital Compass 
 
PARAMETER1: sentence - a string containing a line of HPR data 
 
RETURN VALUE:    0 - success 
  -1 - parsing error 
  
  -2 - heading marked invalid 
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SEE ALSO: 
 
END DESCRIPTION **********************************************************/ 
 
int compass_get_hdg(char sentence[MAX_SENTENCE]) 
{ 
 auto int i; 
 char *err,*hdg,*type; 
 char error; 
 
 if(strlen(sentence) < 4) 
  return -1; 
 if(strncmp(sentence, "$PTNTHPR", 8) == 0) 
 { 
  //parse hpr sentence 
  type = strtok(sentence, ","); 
  hdg = strtok(NULL, ","); 
  err = strtok (NULL, ","); 
  if(hdg == NULL) 
   return -2; 
 
  //pull out data 
  curr_hdg = atof(hdg); 
 
  error = (int)err; 
  if (strncmp(&error, "N", 1) == 0) 
   return -2; 
 
 } 
 else 
  return -1; 
 
 return 0; 
 
} 
 
/* START FUNCTION DESCRIPTION ******************************************** 
gps_parse_coordinate 
 
SYNTAX:  gps_parse_coordinate(char *coord, int *degrees, float *minutes) 
 
KEYWORDS:      gps parse 
 
DESCRIPTION:  Parses GPS position data 
 
PARAMETER1: coord - contains N/S, E/W 
            degrees, minutes - positional information 
 
RETURN VALUE:    0 - success (xxxxx.xxxx minutes) 
  -1 - parsing error 
 
SEE ALSO: 
 
END DESCRIPTION **********************************************************/ 
 
nodebug int gps_parse_coordinate(char *coord, int *degrees, float *minutes) 
{ 
 auto char *decimal_point; 
 auto char temp; 
 auto char *dummy; 
 
 decimal_point = strchr(coord, '.'); 
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 if(decimal_point == NULL) 
  return -1; 
 temp = *(decimal_point - 2); 
 *(decimal_point - 2) = 0; //temporary terminator 
 *degrees = atoi(coord); 
 *(decimal_point - 2) = temp; //reinstate character 
 *minutes = strtod(decimal_point - 2, &dummy); 
 return 0; 
} 
 
 
/* START FUNCTION DESCRIPTION ******************************************** 
gps_get_position 
 
SYNTAX:    int gps_get_position(GPSPositon *newpos, char 
*sentence); 
 
KEYWORDS:      gps 
 
DESCRIPTION:   Parses a sentence to extract position data. 
     This function is able to parse any of the 
following 
     GPS sentence formats: GGA 
 
PARAMETER1:    newpos - a GPSPosition structure to fill 
PARAMETER2:  sentence - a string containing a line of GPS data 
     in NMEA-0183 format 
 
RETURN VALUE:  0 - success 
     -1 - not differential 
     -2 - sentence marked invalid 
     -3 - parsing error 
 
SEE ALSO: 
 
END DESCRIPTION **********************************************************/ 
 
//can parse GGA 
nodebug int gps_get_position(GPSPosition *newpos, char *sentence) 
{ 
 auto int i; 
 
 if(strlen(sentence) < 4) 
  return -3; 
 if(strncmp(sentence, "$GPGGA", 6) == 0) 
 { 
  //parse GGA sentence 
  for(i = 0;i < 11;i++) 
  { 
   sentence = strchr(sentence, ','); 
   if(sentence == NULL) 
    return -3; 
   sentence++; //first character in field 
   //pull out data 
   if(i == 1) //latitude 
   { 
    if( gps_parse_coordinate(sentence, 
               
&newpos->lat_degrees, 
               
&newpos->lat_minutes) 
      ) 
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    { 
     return -3; //get_coordinate failed 
    } 
   } 
   if(i == 2) //lat direction 
   { 
    newpos->lat_direction = *sentence; 
   } 
   if(i == 3) // longitude 
   { 
    if( gps_parse_coordinate(sentence, 
               
&newpos->lon_degrees, 
               
&newpos->lon_minutes) 
      ) 
    { 
     return -3; //get_coordinate failed 
    } 
   } 
   if(i == 4) //lon direction 
   { 
    newpos->lon_direction = *sentence; 
   } 
   if(i == 5) //link quality 
   { 
    if(*sentence == '0') 
     return -2; 
    if(*sentence == '1') 
     return -1; 
   } 
  } 
 } 
 else 
 { 
  return -3; //unknown sentence type 
 } 
 return 0; 
} 
 
/* START FUNCTION DESCRIPTION ******************************************** 
ERROR_function 
 
SYNTAX:     int ERROR_function(new_hdg); 
 
KEYWORDS:      nav, control 
 
DESCRIPTION:   Determines heading error for use by Nav and Control 
costatements, 
     currently allows a 6 degree range 
 
PARAMETER1:    new_hdg - latest update of bearing to next waypoint or direction 
                    to drive based upon collision contact 
 
RETURN VALUE:  hdg_error 
 
SEE ALSO: 
 
END DESCRIPTION **********************************************************/ 
int ERROR_function(float new_hdg) 
{ 
    hdg_error = new_hdg - curr_hdg; 
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    if (hdg_error <= 6.0 && hdg_error > 0.0) 
   { 
   hdg_error = 0.0; 
   } 
  if (hdg_error >= -6.0 && hdg_error < 0.0) 
   { 
   hdg_error = 0.0; 
   } 
 
  return(hdg_error); 
} 
 
/* START FUNCTION DESCRIPTION ******************************************** 
gps_get_position 
 
SYNTAX:    void msDelay(long sd); 
 
KEYWORDS:      delay, wait 
 
DESCRIPTION:   introduces a defined ms delay loop 
 
PARAMETER1:    sd - number of ms to wait 
 
SEE ALSO: 
 
END DESCRIPTION **********************************************************/ 
void msDelay (long sd) 
{ 
 unsigned long t1; 
 
 t1 = MS_TIMER; 
 for (t1 = MS_TIMER; MS_TIMER < (sd + t1); ); 
} 
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